

OEM7500 Data Sheet

OEM7500 Data Sheet v2 April 2022

OEM7500 Data Sheet

Publication Number: OM-20000178

Revision Level: v2

Revision Date: April 2022

To download the latest firmware and/or software visit: <u>novatel.com/support/support-materials/firmware-download</u>.

Warranty

NovAtel Inc. warrants that its GNSS products are free from defects in materials and workmanship, subject to the conditions set forth on our web site: novatel.com/products/novatel-warranty-and-return-policies.

Return Instructions

To return products, refer to the instructions found at: novatel-warranty-and-return-policies.

Proprietary Notice

ALIGN, NovAtel, OEM7, SPAN and TerraStar are trademarks of NovAtel, Inc., entities within the Hexagon Autonomy & Positioning division, their affiliated entities, and/or their licensors. All other trademarks are properties of their respective owners.

©2022 NovAtel Inc. All rights reserved. NovAtel is part of Hexagon. NovAtel makes no representation or warranty regarding the accuracy of the information in this publication. This document gives only a general description of the product(s) or service(s) offered by NovAtel and, except where expressly provided otherwise, shall not form part of any contract. Such information, the products and conditions of supply are subject to change without notice.

Table of Contents

OEM7500 Notices

Customer	Sup	port
----------	-----	------

Chapter 1 Overview	
1.1 Electrostatic Discharge (ESD) Precautions	12
1.2 Related Documents and Information	13
Chapter 2 Integration	
2.1 Current Requirements	14
2.2 Module Pinout and Descriptions	
2.3 Recommended Operating Conditions	
2.3.1 Antenna Recommendations	
2.4 RF Layout Constraints	
2.5 Module Initialization	
2.6 LEDs	24
2.7 Module Customization	24
2.8 SPAN	25
2.9 LNA Status and LNA Power Enable Control Integration	25
2.10 Package Information	25
2.11 Mechanical Drawings	26
2.11.1 Land Pattern and Solder Stencil Design	27
2.12 Manufacturing Process Information	29
2.13 Example Use Cases Diagrams	30
Chapter 3 Troubleshooting	
Chapter 4 Firmware Upgrade	
APPENDIX A OEM7500 Technical Specifications	
A.1 OEM7500 Performance Specifications	35
A.2 OEM7500 Electrical and Environmental Specifications	37
A.3 OEM7500 Absolute Maximum Ratings	39
A.4 OEM7500 Data Communication Specifications	40

OEM7500 Notices

The following notices apply to the OEM7500 receiver.

Changes or modifications to this equipment, not expressly approved by NovAtel Inc., could void the user's authority to operate this equipment.

FCC

The devices covered by this manual comply with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The equipment listed has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. The Class B limits are designed to provide reasonable protection against harmful interference in a residential installation. The equipment listed generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna
- · Increase the separation between the equipment and the receiver
- · Connect the equipment to an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

Innovation, Science and Economic Development (ISED) Canada

OEM7 Class B digital device complies with Canadian ICES-003.

OEM7 appareils numérique de la classe B sont conforme à la norme NMB-003 du Canada.

This device complies with ISED license-exempt RSS-GEN and RSS-247. Operation is subject to the following two conditions: (1) this device may not cause interference and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Cet appareil est conforme à la norme ISED RSS-GEN et RSS-247. Son fonctionnement est soumis aux deux conditions suivantes: (1) cet appareil ne doit pas provoquer d'interférences et (2) cet appareil doit accepter toute interférence, y compris les interférences pouvant entraîner un fonctionnement indésirable de l'appareil.

European Union (EU) / United Kingdom (UK)

NovAtel Inc. declares that the OEM7 GNSS receiver is in compliance with:

- 1. EU Directive 2014/53/EU
- 2. UK Regulations S.I. 2017/1206

The full text of the Declaration of Conformity may be obtained from the NovAtel website at: novatel.com/products/novatel-compliance.

WEEE

If you purchased your OEM7 family product in Europe or the United Kingdom, please return it to your dealer or supplier at the end of life. The objectives of NovAtel's environment policy are, in particular, to preserve, protect and improve the quality of the environment, protect human health and utilise natural resources prudently and rationally. Sustainable development advocates the reduction of wasteful consumption of natural resources and the prevention of pollution. Waste Electrical and Electronic Equipment (WEEE) is a regulated area. Where the generation of waste cannot be avoided, it should be reused or recovered for its material or energy. WEEE

products may be recognized by their wheeled bin label (

See novatel.com/products/novatel-compliance/novatel-environmental-compliance for more information.

RoHS

The OEM7 GNSS receivers are in conformity with:

- 1. Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
- 2. the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (Amendment) Regulations 2012 (S.I. 2012/3032).

Lightning Protection

For a permanent or a fixed station installation, NovAtel recommends the installation of a lightning protection device for the GNSS antenna cable and/or radio antenna cable at the building entry point in accordance with the local electrical code.

Equipment protection measures should include:

- Selection of a suitable Lightning/Surge protection device
- · Safety/Equipment rack grounding
- · Lightning/Surge Protection of power lines and communication ports at the building entry point

For more information regarding the selection of surge protection devices for your application, the following websites are provided as a reference.

www.polyphaser.com/ www.hubersuhner.com

Only qualified personnel, such as electricians mandated by the governing body in the country of installation, may install lightning protection devices.

Conventions

The following conventions are used in this manual:

Information that supplements or clarifies text.

A caution that actions, operation or configuration may lead to incorrect or improper use of the hardware.

A warning that actions, operation or configuration may result in regulatory noncompliance, safety issues or equipment damage.

Customer Support

NovAtel Knowledge Base

If you have a technical issue, visit the NovAtel Support page at <u>novatel.com/support</u>. Through the *Support* page you can contact Customer Support, find papers and tutorials or download the latest firmware. To access the latest user documentation, visit <u>docs.novatel.com/OEM7</u>.

Before Contacting Customer Support

Before contacting NovAtel Customer Support about a software problem, perform the following steps:

If logging data over an RS-232 serial cable, ensure that the configured baud rate can support the data bandwidth (see **SERIALCONFIG** command). NovAtel recommends a minimum suggested baud rate of 230400 bps.

- 1. Log the data suggested in the appropriate *Troubleshooting Logs* section to a file on your computer for 15 minutes.
 - General Troubleshooting Logs on the next page
 - Tracking and Interference Troubleshooting Logs on the next page
 - SPAN Troubleshooting Logs on page 9
 - RTK Troubleshooting Logs on page 9
 - PPP Troubleshooting Logs on page 10
 - ALIGN Troubleshooting Logs on page 10

If using NovAtel Application Suite, log the Troubleshooting message set for 15 minutes.

- 2. Send the data file to NovAtel Customer Support: support.novatel@hexagon.com
- 3. You can also issue a **FRESET** command to the receiver to clear any unknown settings.

The **FRESET** command will erase all user settings. You should know your configuration (by requesting the RXCONFIGA log) and be able to reconfigure the receiver before you send the **FRESET** command.

If you are having a hardware problem, send a list of the troubleshooting steps taken and the results.

Contact Information

Log a support request with NovAtel Customer Support using one of the following methods:

Log a Case and Search Knowledge:

Website: novatel.com/support

Log a Case, Search Knowledge and View Your Case History: (login access required)

Web Portal: https://novatelsupport.force.com/community/login

E-mail:

support.novatel@hexagon.com

Telephone:

U.S. and Canada: 1-800-NOVATEL (1-800-668-2835)

International: +1-403-295-4900

General Troubleshooting Logs

```
LOG RXSTATUSB ONCHANGED
```

LOG RAWEPHEMB ONNEW

LOG GLORAWEPHEMB ONNEW

LOG BESTPOSB ONTIME 1

LOG RANGEB ONTIME 1

LOG RXCONFIGA ONCE

LOG VERSIONA ONCE

LOG LOGLISTA ONCE

LOG PORTSTATSA ONTIME 10

LOG PROFILEINFOA ONCE

LOG HWMONITORA ONTIME 10

Tracking and Interference Troubleshooting Logs

- LOG VERSIONA ONCE
- LOG RXCONFIGA ONCE
- LOG CHANCONFIGLISTB ONCE
- LOG PASSTHROUGHA ONNEW
- LOG RXSTATUSB ONCHANGED
- LOG CLOCKSTEERINGB ONCHANGED
- LOG RAWEPHEMB ONNEW
- LOG GLORAWEPHEMB ONNEW
- LOG GALINAVRAWEPHEMERISB ONNEW
- LOG BDSEPHEMERISB ONNEW
- LOG QZSSEPHEMERISB ONNEW
- LOG NAVICEPHEMERISB ONNEW
- LOG RAWALMB ONNEW
- LOG GLORAWALMB ONNEW
- LOG GALALMANACB ONNEW
- LOG BDSALMANACB ONNEW
- LOG QZSSALMANACB ONNEW
- LOG NAVICALMANACB ONNEW
- LOG IONUTCB ONNEW
- LOG GLOCLOCKB ONNEW
- LOG GALCLOCKB ONNEW
- LOG BDSCLOCKB ONNEW
- LOG TRACKSTATB ONTIME 1
- LOG RANGEB ONTIME 1
- LOG BESTPOSB ONTIME 1
- LOG SATVIS2B ONTIME 30
- LOG ITDETECTSTATUSB ONCHANGED

For interference issues add this log.

```
LOG ITPSDDETECTB ONNEW
```

For interference issues, when you have enough datalink bandwidth to handle large logs, add this log:

LOG ITPSDFINALB ONNEW

SPAN Troubleshooting Logs

```
LOG RXSTATUSB ONCHANGED
```

- LOG RAWEPHEMB ONNEW
- LOG GLORAWEPHEMB ONNEW
- LOG GALINAVRAWEPHEMERISB ONNEW
- LOG BDSEPHEMERISB ONNEW
- LOG BESTPOSB ONTIME 1
- LOG RANGEB ONTIME 1
- LOG RXCONFIGA ONCE
- LOG VERSIONA ONCE
- LOG RAWIMUSXB ONNEW
- LOG INSUPDATESTATUSB ONCHANGED
- LOG INSPVAXB ONTIME 1
- LOG INSCONFIGA ONCHANGED
- LOG BESTGNSSPOSB ONTIME 1

RTK Troubleshooting Logs

- LOG RXSTATUSB ONCHANGED
- LOG RAWEPHEMB ONNEW
- LOG GLORAWEPHEMB ONNEW
- LOG QZSSRAWEPHEMB ONNEW
- LOG BDSRAWNAVSUBFRAMEB ONNEW
- LOG GALFNAVRAWEPHEMERISB ONNEW
- LOG GALINAVRAWEPHEMERISB ONNEW
- LOG RANGEB ONTIME 1.0
- LOG BESTPOSB ONTIME 1.0
- LOG RXCONFIGB ONCE
- LOG VERSIONB ONCE
- LOG TRACKSTATB ONTIME 1.0
- LOG RTKPOSB ONTIME 1.0
- LOG MATCHEDPOSB ONNEW
- LOG MATCHEDSATSB ONNEW
- LOG RTKSATSB ONTIME 1.0
- LOG PSRPOSB ONTIME 1.0
- LOG RAWALMB ONNEW
- LOG IONUTCB ONNEW
- LOG GLORAWALMB ONNEW
- LOG GLOCLOCKB ONNEW
- LOG PASSTHROUGHB ONNEW
- LOG CLOCKMODELB ONTIME 1.0
- LOG REFSTATIONB ONNEW
- LOG RTKVELB ONTIME 1.0

PPP Troubleshooting Logs

```
LOG RXSTATUSB ONCHANGED
LOG GPSEPHEMB ONNEW
LOG GLOEPHEMERISB ONNEW
LOG QZSSEPHEMERISB ONNEW
LOG BDSEPHEMERISB ONNEW
LOG BDSBCNAV1EPHEMERISB ONNEW (firmware versions 7.08.03 and 7.08.10 and later)
LOG BDSBCNAV2EPHEMERISB ONNEW (firmware versions 7.08.03 and 7.08.10 and later)
LOG BDSBCNAV3EPHEMERISB ONNEW (firmware versions 7.08.03 and 7.08.10 and later)
LOG GALFNAVEPHEMERISB ONNEW
LOG GALINAVEPHEMERISB ONNEW
LOG RANGEB ONTIME 1.0
LOG BESTPOSB ONTIME 1.0
LOG RXCONFIGB ONCE
LOG VERSIONB ONCE
LOG TRACKSTATB ONTIME 10.0
LOG LBANDTRACKSTATB ONTIME 1.0
LOG PPPPOSB ONTIME 1.0
LOG PPPSATSB ONTIME 1.0
LOG TERRASTARINFOB ONCHANGED
LOG TERRASTARSTATUSB ONCHANGED
LOG PSRPOSB ONTIME 1.0
LOG ALMANACB ONNEW
LOG GLOALMANACB ONNEW
LOG GALALMANACB ONNEW
LOG BDSALMANACB ONNEW
LOG QZSSALMANACB ONNEW
LOG IONUTCB ONNEW
LOG GLOCLOCKB ONNEW
LOG LBANDBEAMTABLEB ONCHANGED
```

ALIGN Troubleshooting Logs

```
LOG RXSTATUSB ONCHANGED
LOG RAWEPHEMB ONNEW
LOG GLORAWEPHEMB ONNEW
LOG GALINAVRAWEPHEMERISB ONNEW
LOG BDSEPHEMERISB ONNEW
LOG BESTPOSB ONTIME 1
LOG RANGEB ONTIME 1
LOG RXCONFIGA ONCE
LOG VERSIONA ONCE
LOG LOGLISTA ONCE
LOG PORTSTATSA ONTIME 10
LOG ALIGNBSLNENUB ONNEW
LOG ALIGNBSLNXYZB ONNEW
LOG ALIGNDOPB ONNEW
LOG HEADING2B ONNEW
LOG MASTERPOSB ONNEW
LOG ROVERPOSB ONNEW (This log can only be output if you have Y model ALIGN)
LOG HEADINGSATSA ONNEW (This log can only be output on the ALIGN rover)
LOG DUALANTENNAHEADINGB ONTIME 1.0
```

Chapter 1 Overview

The multi-frequency OEM7500 offers future ready, precise positioning for space constrained applications. This single-sided Surface Mount Device (SMD) package solders down directly, eliminating the need for connectors and mounting hardware.

Key product features include:

- · Centimetre level precise positioning GNSS receiver
- Small, cost effective multi-frequency, multi-constellation support
- · RTK, PPP and SBAS precise positioning modes
- Support various differential correction formats (RTCM 2.1, 2.3, 3.0, 3.1, CMR, CMR+ and RTCA)
- NovAtel binary/ASCII logs and NMEA-0183
- Current and future GNSS signals support
- · PAC multipath mitigation technology
- GNSS Resilience and Integrity Technology (GRIT)
- · Solder down module with effective thermal mitigation features
- Deeply-coupled GNSS+INS SPAN support with SPI interface to external IMU (contact Sales for supported models)

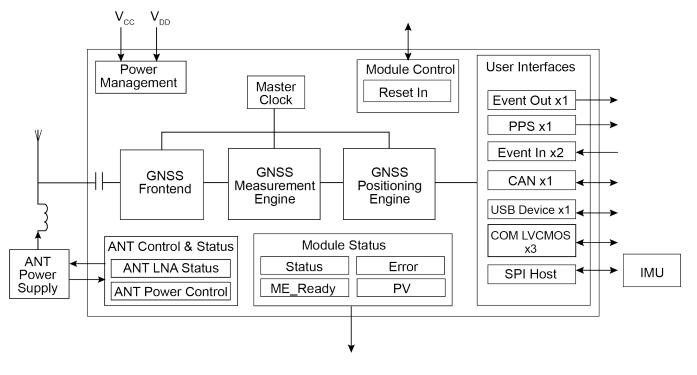


Figure 1: Receiver Functional Block Diagram

Table 1: Supported Signals and Frequencies

GNSS Signal	Frequency (MHz)
GPS L5*	1176.45

GNSS Signal	Frequency (MHz)
GPS L2 C & P	1227.60
GPS L1 C/A	1575.42
GPS L1C*	1575.42
GLONASS L3*	1202.025 MHz
GLONASS L2CA & L2P	1242.9375 – 1248.625
GLONASS L1 C/A	1598.0625 – 1605.375
BeiDou B2a*	1176.45
BeiDou B2I	1207.14
BeiDou B2b*	1207.14
BeiDou B1I	1561.098
BeiDou B1C*	1575.42
Galileo E5a*	1176.45
Galileo E5-AltBOC*	1191.80
Galileo E5b	1207.14
Galileo E1C	1575.42
QZSS L5*	1176.45
QZSS L2C	1227.60
QZSS L1C/A & L1C & L1-SAIF	1575.42
NavIC (IRNSS) L5*	1176.45
SBAS L5*	1176.45
SBAS L1	1575.42
TerraStar L-Band	1545 – 1560

^{*}Hardware ready for future firmware upgrade.

1.1 Electrostatic Discharge (ESD) Precautions

The OEM7500 module is an ESD sensitive device and necessary precautions must be taken when handling the module.

- Always wear a properly grounded anti-static wrist strap when handling the module.
- Never let the module come in contact with clothing. The ground strap cannot dissipate static charges from fabrics.
- Failure to follow accepted ESD handling practices could cause damage to the module.

For a detailed guide to ESD practices, refer to <u>docs.novatel.com/OEM7/Content/Appendix/ESD_Practices.htm.</u>

1.2 Related Documents and Information

The NovAtel OEM7 User Documentation portal is the primary source for command and log information as well as receiver configuration, SPAN setup and other functionality.

docs.novatel.com/OEM7

Contact NovAtel Customer Support for any other inquiries related to the OEM7500 (refer to *Customer Support* on page 7 for contact details).

Chapter 2 Integration

The following sections provide information needed to integrate an OEM7500 receiver into your design.

2.1 Current Requirements

The following table is indicative of the current requirements for the module. The actual power required is dependent on the firmware version used, the number of satellites and signals tracked and the logging rate of the receiver.

Table 2: Module Current Requirements

Symbol	Parameter	Typical L1	Typical L1/L2	Maximum	Units
VDD	1.2 V Digital core power supply voltage	471	582	800 ¹	mA
VCC	3.3 V Module power supply voltage	119	193	2801	mA

It is recommended that a minimum of 3 x 22 μ F bulk capacitance is provided on the interface board for each rail. Place the bulk capacitors close to the respective power pins on the module.

OEM7500 Data Sheet v2

-

¹Current requirements increase with the temperature. These numbers are indicative of the current requirements at room temperature.

2.2 Module Pinout and Descriptions

Table 3: Module Pin Outs

Name	Pin		Pin	Name
GND	1		52	GND
nRESET_IN	2		51	RF_IN
ME_RDY	3		50	GND
PV	4		49	ANT_POWER_CTRL
GND	5		48	ANT_LNA_STATUS
SPI_NCS2	6		47	ERROR
SPI_NCS1	7		46	GND
Reserved	8		45	VCC
GND	9	Pin 1 Pin 52	44	VCC
VDD	10		43	GND
VDD	11		42	STATUS_GREEN
Reserved	12		41	STATUS_RED
SPI_MISO	13		40	GND
SPI_SCLK	14		39	COM1_RXD
GND	15		38	COM1_TXD
SPI_MOSI	16		37	GND
EVENT_OUT	17		36	CAN_RXD
GND	18	Pin 26 Pin 27	35	CAN_TXD
EVENT_IN1	19		34	COM2_RXD
EVENT_IN2	20		33	COM2_TXD
GND	21		32	GND
Reserved	22		31	USB_D+
USB_VBUS	23		30	USB_D-
COM3_RXD	24		29	GND
COM3_TXD	25		28	TIMEMARK
GND	26		27	GND

Module has a solder pad for thermal mitigation. This pad is tied to GND net.

Except as noted in the *Table 4: Module Pin Out Descriptions* below, all signals are 3.3 V LVCMOS inputs/outputs.

Table 4: Module Pin Out Descriptions

Pin	Pin Name	I/O	Internal Pull Resistance	Drive Strength	Description and Notes
1	GND				Ground
					Manual reset input
2	nRESET_IN	Input	10kΩ pull up		Active low – Pull this pin low to hold the module in reset.
					Use a component with an open drain output to pull this pin low to hold module in reset. Do not actively drive this pin high.
					Measurement engine ready
3	ME_RDY	Output	2.2kΩ pull down	8 mA	Active high – this signal goes high when the module has initialized itself and is ready to send and receive data via its communication ports.
					This signal is not asserted while booting or during a reset.
					Position valid
4	PV	Output	2.2kΩ pull down	8 mA	Active high, firmware default = Low
					This signal goes high when a position has been calculated.
5	GND				Ground
					SPI chip select 2
6	SPI_NCS2	Output		6 mA	Active low
					IMU secondary default
					SPI chip select 1
7	SPI NCS1	Output		6 mA	Active low
	<u>_</u>	Juipui			Firmware default: use for IMU SPI chip select
8	Reserved	Output	2.2kΩ pull up		Leave this pin unconnected. Do not connect this pin to power, ground or any signal.
9	GND				Ground

Pin	Pin Name	I/O	Internal Pull Resistance	Drive Strength	Description and Notes
					1.2 V ±5% Supply Input
10	VDD	Input			Pin 10 and Pin 11 are tied together on the module. See <i>Table 2: Module Current Requirements</i> on page 14 for continuous current draw on this rail.
					1.2 V ±5% Supply Input
11	VDD	Input			Pin 11 and Pin 10 are tied together on the module. See <i>Table 2: Module Current Requirements</i> on page 14 for continuous current draw on this rail.
12	Reserved	Input/ Output	2.2kΩ pull up		Leave this pin unconnected. Do not connect this pin to power, ground or any signal.
13	SPI_MISO	Input	10kΩ pull up		SPI master data input
					SPI clock
14	SPI_SCLK	Output		8 mA	Module is always the SPI bus master and this pin is always an output. The SPI_ SCLK signal is source serial terminated $(33~\Omega)$.
15	GND				Ground
					SPI master data output
16	SPI_MOSI	Output		8 mA	The SPI_MOSI signal is source serial terminated (33 Ω).
					Event output
17	EVENT OUT	Output		8 mA	Programmable variable frequency output.
		'			The Event output signal is source serial terminated (22 Ω)
18	GND				Ground
					Event input 1
					IMU interrupt or input mark
					Minimum pulse width is 150 ns.
19	EVENT_IN1	Input	10kΩ pull up		Firmware default = Disabled
					This pin must not be driven until power is applied to the module VDD and VCC pins.
					Polarity is configurable using the EVENTINCONTROL command.

Pin	Pin Name	I/O	Internal Pull Resistance	Drive Strength	Description and Notes
					Event input 2
					Rising or falling edge triggered. This is used to provide position or time data on an external trigger.
20	EVENT_IN2	Input	10KΩ pull up		Firmware default = Disabled
					This pin must not be driven until power is applied to the module VDD and VCC pins.
					Polarity is configurable using the EVENTINCONTROL command.
21	GND				Ground
22	Reserved	Input	10kΩ pull up		Leave this pin unconnected. Do not connect this pin to power, ground or any signal.
					USB 5 V tolerant VBUS input
23	USB_VBUS	Input	1.2kΩ pull down		Pin must be pulled high when the module is physically connected to a USB host. The module sinks nominally 4.1 mA on this pin – the applied voltage on this pin is for indication purposes.
					Leave unconnected if the USB interface is not used.
					UART COM3 receive data input
24	COM3_RXD	Input	33kΩ pull up		Firmware default = 9600 bit/s, hardware flow control is not supported
					Maximum data rate 460,800 bit/s
					UART COM3 transmit data output
25	COM3_TXD		ut	4 mA	Firmware default = 9600 bit/s, hardware flow control is not supported
23	COM3_1XD	Output		411114	Maximum data rate 460,800 bit/s
					The COM3_TXD signal is source serial terminated (33 Ω)
26	GND				Ground
27	GND				Ground

Pin	Pin Name	I/O	Internal Pull Resistance	Drive Strength	Description and Notes
					Timemark output
					Pulse Per Second (PPS)
28	TIMEMARK	Output		8 mA	Firmware default = enabled, positive polarity, 1 Hz (configurable)
					The Timemark signal is source serial terminated (10 Ω)
29	GND				Ground
20	LICD D	Input/			USB data signal line D-
30	USB_D-	Output			USB 2.0 full speed (12 Mbps)
31	IISB DT	Input/			USB data signal line D+
31	USB_D+	Output			USB 2.0 full speed (12 Mbps)
32	GND				Ground
					UART COM2 transmit data output
20	COMO TVD	Output		4 mA	Firmware default = 9600 bit/s, hardware flow control is not supported
33	COM2_TXD				Maximum data rate 460,800 bit/s
					The COM2_TXD signal is source serial terminated (33 Ω)
					UART COM2 receive data input
34	COM2_RXD	Input	33kΩ pull up		Firmware default = 9600 bit/s, hardware flow control is not supported
					Maximum data rate 460,800 bit/s
					CAN Bus transmit data output
35	CAN_TXD	Output		6 mA	Firmware default = Disabled
					Maximum data rate 1Mbit/s
			221/0 2011		CAN Bus receive data input
36	CAN_RXD	Input	33kΩ pull down		Firmware default = Disabled
					Maximum data rate 1 Mbit/s
37	GND				Ground

Pin	Pin Name	I/O	Internal Pull Resistance	Drive Strength	Description and Notes
					UART COM1 transmit data output
20		Outro et		4 4	Firmware default = 9600 bit/s, hardware flow control is not supported
38	COM1_TXD	Output		4 mA	Maximum data rate 460,800 bit/s
					The COM3_TXD signal is source serial terminated (33 Ω)
					UART COM1 receive data input
39	COM1_RXD	Input	33kΩ pull up		Firmware default = 9600 bit/s, hardware flow control Is not supported
					Maximum data rate 460,800 bit/s
40	GND				Ground
					Red Status LED control
					Active high, firmware default = High
41	STATUS_ RED	Output	Buffered	24 mA	Used to indicate the state of the receiver or provide error codes.
					The Status_Red signal is source serial terminated (22 Ω)
					Green Status LED control
					Active high, firmware default = Low
42	STATUS_ GREEN	Output	Buffered	24 mA	Used to indicate the state of the receiver or provide error codes.
					The Status_Green signal is source serial terminated (22 Ω)
43	GND				Ground
					3.3 V ±5% supply input
44	vcc	Input			Pin 44 and Pin 45 are tied together on the module. See <i>Table 2: Module Current Requirements</i> on page 14 for continuous current draw on this rail.
					3.3 V ±5% supply input
45	vcc	Input			Pin 45 and Pin 44 are tied together on the module. See <i>Table 2: Module Current Requirements</i> on page 14 for continuous current draw on this rail.
46	GND				Ground

Pin	Pin Name	I/O	Internal Pull Resistance	Drive Strength	Description and Notes
					Error indicator
47	ERROR	Output	2.2kΩ pull	8 mA	Active high, firmware default = Low,
		Japan	down	 .	Error signal is asserted high to indicate the receiver is in an error state.
					Antenna power status pin
48	ANT_LNA_ STATUS	Input	33kΩ pull up		Assert this line low to report an overcurrent fault on the external antenna power control circuit.
					Antenna power control pin
		_	ut 33kΩ pull up	8 mA	Active High
40	ANT_				This signal is asserted high to turn on the external power to the antenna.
49	49 POWER_ Output	Output			Note: This signal has a relatively strong pull-up when the module is in the reset state. To hold this signal in a low state during module reset, a strong pull down is required on the interface board (2.2 K)
50	GND				Ground
					GNSS RF signal input
51	51 RF_IN	Input			50 ohm controlled impedance RF input from the GNSS antenna. This input is AC coupled internally.
					See RF Layout Constraints on the next page for RF layout considerations.
52	GND				Ground
Tab	GND				Solder tab for thermal mitigation

2.3 Recommended Operating Conditions

Table 5: Recommended Operating Conditions

Symbol	Parameter		Minimum	Typical	Maximum	Units
V _{DD}	Digital core power supply voltage		1.14	1.2	1.26	V
V _{CC}	Module power supply voltage		3.14	3.3	3.46	V
V _{IH}	Input high voltage	3.3V I/O	2.0		V _{CC} + 0.3	V
V _{IL}	Input low voltage	3.3V I/O	-0.3		0.8	V

Symbol	Parameter		Minimum	Typical	Maximum	Units
V _{OH}	Output high voltage	3.3V I/O ¹	V _{CC} - 0.2			V
V _{OL}	Output low voltage	3.3V I/O ²			0.2	V
V _{IH}	Input high voltage	USB_VBUS	2.5		5.25	V
V _{IL}	Input low voltage	USB_VBUS	-0.3		0.8	V
T _A	Ambient temperature		-40		85	°C

 V_{CC} and V_{DD} pins must come up within 20 ms of each other. Input pins must not be driven until both rails are stable and within 5% of their target voltage. Module may not come up properly if used otherwise.

2.3.1 Antenna Recommendations

A nominal cascaded antenna gain is required for the OEM7500.

- 20 dB or higher with a nominal 26 dB to 30 dB for GNSS
- 35 dB or higher for L-Band

2.4 RF Layout Constraints

Proper layout between the RF input pad (Pin 51) on the OEM7500 module and RF input connector on the customer's interface board is critical for best overall system performance.

- The RF interface (Pin 51) on the OEM7500 module has been optimized to 50 Ω, therefore the interface to
 Pin 51 (traces into the pin and the entry into the pin pad) must be designed to 50 Ω to ensure proper signal
 integrity. The RF trace routing on the interface board must be kept away from any digital signals (NovAtel
 recommends 2 to 4 mm between RF trace and digital trace), such as clock traces or vias that may inject
 noise into the RF signal.
- As shown in the RF traces on the interface board, the component (L302) which is on the bottom side of the PCB for the antenna power coupling should be placed as close as possible to Pad 51 on OEM7500 module. Vias should be used to connect the top side ground fill to the ground plane on an inner layer of the PCB. The copper pour on the outer layer is important for the RF trace on the interface board as it allows better noise rejection.

¹Test condition I_{OH} = -100uA

²Test condition I_{OI} = 100uA

Place near RF connector

L301
100 nH
5%
FB301
LNA PWR

C303
10 µF
20%

Figure 2: RF Interface Circuit

Table 6: RF Interface Circuit Bill of Materials

Reference Designator	Description	Manufacturer	Part Number
C303	CAP CER 10UF 10V 20% X5R 0402	Samsung	CL05A106MP5NUNC
FB301	BEAD FERRITE ILHB 250 OHM 3A SMD	VISHAY-DALE	ILHB0805ER251V
J301	CONN MMCX STRAIGHT PCB RECEPT W/STANDOFF	JOHNSON COMPONENTS	135-3701-201
L301	INDUCTOR CHIP 100nH 5% 0603CS	COILCRAFT INC	0603CS-R10XJLW

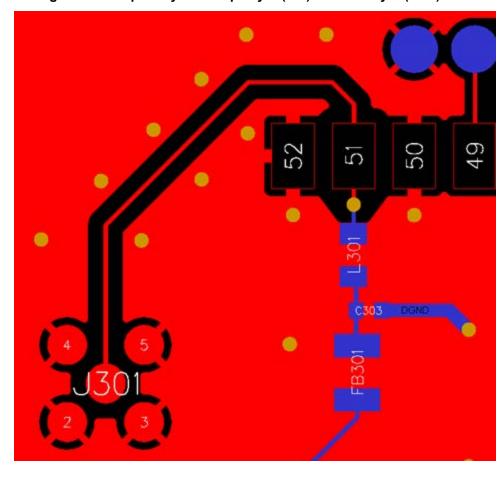


Figure 3: RF Input Layout - Top Layer (red)/Bottom Layer (blue)

2.5 Module Initialization

It is recommended to put the OEM7500 in hardware reset (using the RESET_IN pin) until the host system is booted up and ready to talk to peripherals (ME_RDY high). A way to issue a HW RESET via the RESET_IN pin on the module is also recommended in case a software reset does not work and a power cycle of the system is not desirable.

It is strongly suggested to monitor the ME_RDY line from the module and start communication with the module once the line is set high.

2.6 LEDs

The OEM7500 provides a few status lines to facilitate the integration of the module into a user system, e.g. STATUS_RED and STATUS_GREEN lines can be used to drive Status LEDs to indicate the state of the receiver and provide error codes. Consult the NovAtel OEM7 User Documentation portal docs.novatel.com/OEM7 for Built-In Status LED Tests details.

Contact NovAtel Customer Service to obtain the OEM7500 Evaluation Kit Schematics Package for an example circuit of how to wire the STATUS_RED and STATUS_GREEN lines.

2.7 Module Customization

Consult the NovAtel OEM7 User Documentation portal <u>docs.novatel.com/OEM7</u> to determine the appropriate commands needed to configure the receiver for proper operation. Generally, the commands needed to

initialize the receiver can be entered at a receiver command prompt and then the **SAVECONFIG** command is used to save those commands for execution every time the receiver boots.

Once the final commands needed to initialize the receiver have been determined, those commands can be incorporated into the installation image for volume production.

It is important that customers work with NovAtel sales and support team to ensure the correct receiver model has been identified for inclusion within the final firmware image. The receiver model controls functionality including tracked constellations and positioning rate allowed for the receiver.

2.8 SPAN

When paired with a supported Inertial Measurement Unit (IMU), the OEM7500 can use SPAN technology to provide reliable, continuously available, position, velocity and attitude even through short periods of time when satellite signals are blocked or unavailable.

For information about configuring a receiver with SPAN technology, refer to the NovAtel OEM7 User Documentation portal (docs.novatel.com/OEM7).

2.9 LNA Status and LNA Power Enable Control Integration

The OEM7500 provides GPIOs:

- (Pin 49 ANT_POWER_CTRL) Output pin to control the enabling and disabling of antenna DC voltage output.
- (Pin 48 ANT_LNA_STATUS) Input pin to indicate to the receiver module that an LNA fault has occurred.

Refer to the **RXSTATUS** log on the NovAtel OEM7 User Documentation portal (<u>docs.novatel.com/OEM7</u>) for instructions on monitoring the receiver for errors.

Contact NovAtel Customer Service to obtain the OEM7500 Evaluation Kit Schematics Package for an example of this integration.

2.10 Package Information

Modules are delivered in 15-up JEDEC Thick Style Matrix trays.

43.80

Dimensions are in millimetres

Figure 4: JEDEC Tray

2.11 Mechanical Drawings

Chamfer denotes module Pin 1 orientation

Figure 5: Module Outline Dimensions (Top)

Dimensions are in millimetres
Pin 1, lower left corner

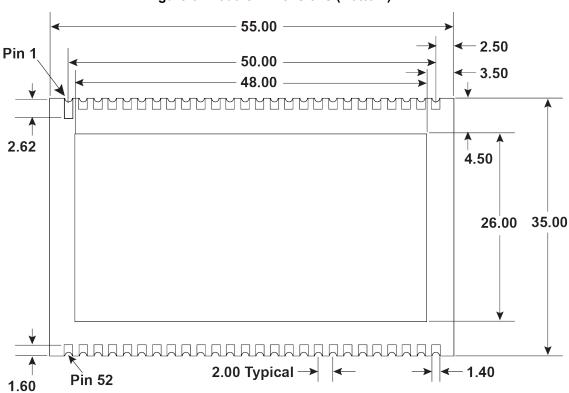


Figure 6: Module Dimensions (Bottom)

Dimensions are in millimetres

2.11.1 Land Pattern and Solder Stencil Design

Note that the module has a large solder pad for thermal mitigation. The pad is tied to Ground.

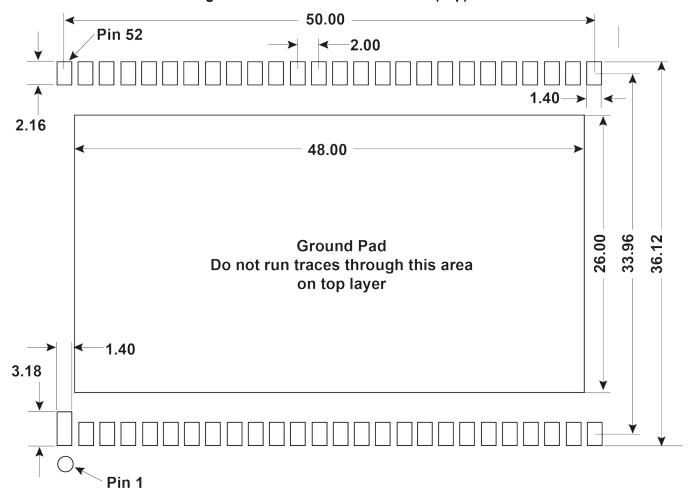


Figure 7: Recommended PCB Pattern (Top)

Dimensions are in millimetres

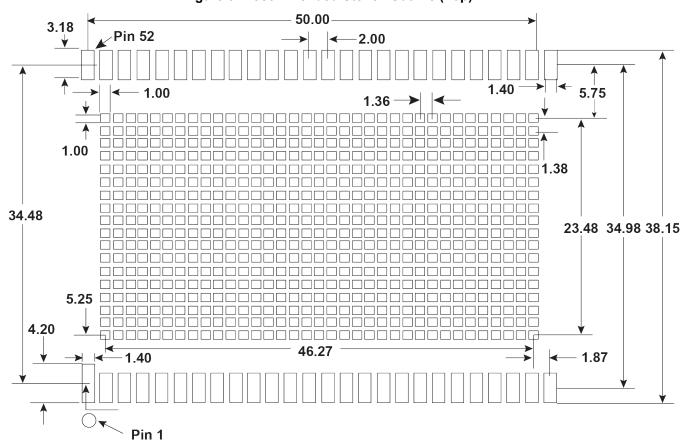


Figure 8: Recommended Stencil Outline (Top)

Dimensions are in millimetres Stencil thickness: 0.102 mm

2.12 Manufacturing Process Information

The module is moisture sensitive (MSL 3). The module must be mounted and reflowed within 168 hours (floor life out of bag). If floor life out of bag time is exceeded and baking is required, refer to IPC/JEDEC J-STD-033 for bake procedure.

Reflow soldering is recommended. A maximum number of 3 reflow passes are allowed. The reflow information is provided for reference only. Users should optimize their own board level parameters to get the desired reflow outcome.

Removing and replacing with the same part is not recommended. Replace with a new part.

Table 7: Reflow Profile

Profile Feature	Lead free Assembly
Ramp-to-Peak profile average ramp-up rate	0.7°C to 1.3°C

Profile Feature	Lead free Assembly
Liquidous Temperature	221°C (SAC 305 Solder Alloy)
Time above liquidous	45 s to 75 s
Peak package body temperature	241°C ±4°C

All components on the module are sealed and the module can withstand an aqueous wash process. The module is assembled using Alpha CVP-390 no-clean solder paste and wash solvents used should be compatible. Users should optimize and verify their own wash process to ensure module performance is not negatively affected.

The module and its components must not be disturbed when in reflow, doing so may damage the module. If the module is removed, replacing with a new module is recommended.

2.13 Example Use Cases Diagrams

GNSS ANT L-Band Corrections PPP RTK SPAN **USB** Device COM3 COM₂ COM₁ SPI RTK Commands Corrections & Logging **RTK** Optional Correction IMU Off-line Debug Host Off-line Debug Source

Figure 9: RTK/PPP/SPAN Use Case

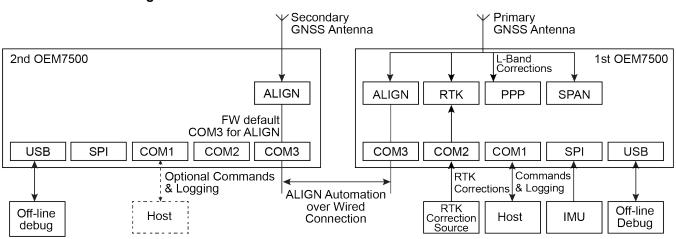


Figure 10: RTK/PPP/SPAN Plus ALIGN with Second Module

Chapter 3 Troubleshooting

Table 8: Available Debugging Options

Interface	Option	Comment	
		The header of all logs contains a 32 bit value for the Receiver Status, which is a copy of the Receiver Status word from the RXSTATUS log.	
UART and	Diagnostic	The RXSTATUS log can be used to monitor the status of different receiver internal operations.	
USB	logs	Generally, logs can be used to check for satellite visibility and data reception (TRACKSTAT log, LBANDTRACKSTAT log).	
		The HWMONITOR log can be used to monitor various voltage levels on the receiver.	
PV line	Position Valid	This signal line is asserted when the receiver has a valid position.	
ME_RDY	Receiver is ready	This signal line is asserted when the receiver has completed its internal boot process and is ready to begin processing commands and operate as a GNSS receiver.	
ERROR	Receiver has encountered an error	This signal is asserted when the receiver has detected an error condition from which it cannot recover. This could be due to a hardware error or the detection of internally inconsistent data or operation.	
	condition	The exact receiver error is shown in the RXSTATUS log.	
STATUS_ GREEN and Red and green STATUS_ LED signals		These signals are used to indicate the state of the receiver or provide error codes. These outputs provide the same information as the Status Indicator LED on OEM7 receiver cards. Refer to Status LED on the OEM7 User Documentation portal (docs.novatel.com/OEM7) for information about using the Status LED for troubleshooting.	
RED		These outputs are used to drive the Status Indicator LED on the OEM7500 Evaluation Kit.	

Chapter 4 Firmware Upgrade

If the firmware needs to be updated, NovAtel provides two methods of updating the firmware image:

- Using Softload commands. While the receiver is running, Softload commands can be used to download a
 firmware image to the receiver. This download can be done over any communication port: COM1, COM2,
 COM3 and USB. Alternatively, a host controller can issue the Softload commands over COM1, COM2 or
 COM3 to download new firmware to the receiver module. See the OEM7 User Documentation portal
 (docs.novatel.com/OEM7/Content/Firmware_Update/Updating_Using_SoftLoad.htm) for information..
- Using NovAtel Application Suite (NAS). NAS is a software program that can be used to upgrade the firmware on the OEM7500. NAS can be downloaded from novatel.com/products/firmware-options-pc-software/novatel-application-suite. For information about using NAS, see docs.novatel.com/Tools.

Ensure that proper voltage levels are used when communicating between the OEM7500 and the computer. Applying high voltages to COM1, COM2 and COM3 pins can damage the OEM7500.

APPENDIX A OEM7500 Technical Specifications

See the following sections for more information about the OEM7500:

Table 9: OEM7500 Physical Description

Size	35 mm x 55 mm x 4 mm
Weight	12 grams

- OEM7500 Performance Specifications on the next page
- OEM7500 Electrical and Environmental Specifications on page 37
- OEM7500 Absolute Maximum Ratings on page 39
- OEM7500 Data Communication Specifications on page 40

A.1 OEM7500 Performance Specifications

All specifications subject to GNSS system characteristics.

Table 10: OEM7500 Receiver Performance

	Single point L1	1.5 m RMS		
	Single point L1/L2	1.2 m RMS		
Position Accuracy ¹	SBAS ²	60 cm RMS		
	DGPS	40 cm RMS		
	TerraStar-L ^{3, 4}	40 cm RMS		
	TerraStar-C PRO ^{3,} 4	2.5 cm RMS		
	RTK	1 cm + 1 ppm RMS		
	GPS	L1 C/A, L1C, L2C, L2P, L5		
	GLONASS	L1 C/A, L2 C/A, L2P, L3		
	BeiDou	B1I, B1C, B2I, B2a, B2b		
Signals Tracked ⁵	Galileo	E1, E5 AltBOC, E5a, E5b		
Olgitals Tracked	NavIC (IRNSS)	L5		
	QZSS	L1 C/A, L1C, L1S, L2C, L5		
	SBAS	L1, L5		
	L-Band	Up to 5 channels		
Time to First Fix	Hot: <20 s (Almanac and recent ephemeris saved and approximate position and time entered)			
	Cold: <39 s (No almanac or ephemeris and no approximate position or time)			
Signal Reacquisition	<0.5 s L1 (typical)			
2.5.761 (6.604 (1.616)	<1.0 s L2 and L5 (typical)			

¹Typical values. All position and velocity RMS values are based on horizontal position accuracy. Performance specifications are subject to GNSS system characteristics, Signal-in-Space (SIS) operational degradation, ionospheric and tropospheric conditions, satellite geometry, baseline length, multipath effects and the presence of intentional or unintentional interference sources.

²GPS-only.

³Requires a TerraStar subscription which is available direct from NovAtel <u>novatel.com/products/gps-gnss-correction-services/terrastar-correction-services.</u>

⁴Performance dependent on local observing conditions.

⁵Software selectable; signal plan 1 includes GPS L1/L2, GLO L1/L2, BDS B1/B2, GAL E1/E5b, QZSS L1/L1C/L2C, available Q1 2018; signal plan 2 includes GPS L1/L2/L5, GLO L1, BDS B1/B2, GAL E1/E5a/E5b/AltBOC, IRNSS L5, QZSS L1/L1C/L2C/L5.

D. t. D. t.	Measurements	up to 100 Hz			
Data Rates	Position	up to 100 Hz			
Time Accuracy ¹	20 ns RMS				
Velocity Accuracy	<0.055 m/s RMS				
			Code	Carrier	
		L1 C/A	4 cm	0.5 mm	
	GPS	L2 P(Y)	8 cm	1.0 mm	
	GPS	L2C	8 cm	0.5 mm	
		L5	3 cm	0.5 mm	
	GLONASS	L1 C/A	8 cm	1.0 mm	
		L2 P	8 cm	1.0 mm	
		L2 C/A	8 cm	1.0 mm	
Measurement Precision ²	Galileo	E1	3 cm	0.5 mm	
		E5a	3 cm	0.75 mm	
		E5b	3 cm	0.75 mm	
		E5 AltBOC	3 cm	0.75 mm	
		B1I	4 cm	0.5 mm	
		B1C	3 cm	0.5 mm	
	BeiDou	B2I	4 cm	0.5 mm	
		B2a	3 cm	0.5 mm	
		B2b ³	3 cm	0.5 mm	
Velocity Limit ⁴	515 m/s				

¹Time accuracy does not include biases due to RF or antenna delay.

²Measurement precision should be compared with measurements using the same correlator spacing.

³Under good CN0 conditions, e.g. 44 dBHz.

⁴Export licensing restricts operation to a maximum of 515 metres per second, message output impacted above 500 m/s.

A.2 OEM7500 Electrical and Environmental Specifications

Table 11: OEM7500 Environmental Specifications

Operating Temperature	-40°C to +85°C
Storage Temperature	-55°C to +95°C
Humidity	95% non-condensing at 40°C
Random Vibration	MIL-STD-810G, Method 514.7, Category 24 (7.7 g RMS)
Sinusoidal Vibration	IEC 60068-2-6 (5.0 g)

Table 12: OEM7500 Power Requirements

In most Valtage	VDD +1.2 VDC ±5%
Input Voltage	VCC +3.3 VDC ±5%
Power Consumption	0.9 W (typical) (dual frequency GNSS)

Table 13: OEM7500 Signals to Module Interfaces

GNSS RF In	1
UART Up to	3
USB 2.0 (Device, 12 Mbit/s) ¹	1
SPI (Host for IMU only)	1
PPS (Timemark)	1
Event In	2
Event Out	1
CAN Bus	1
External LNA power control GPIO	2

¹USB driver available for Windows.

Table 14: OEM7500 RF Input

RF Input Frequencies	GPS L1:	1575.42 MHz
	GPS L2:	1227.60 MHz
	GPS L5:	1176.45 MHz
	GLONASS L1:	1593-1610 MHz
	GLONASS L2:	1237-1254 MHz
	GLONASS L3:	1202.025 MHz
	Galileo E1:	1575.42 MHz
	Galileo E5a:	1176.45 MHz
	Galileo E5b:	1207.14 MHz
	Galileo E5:	1191.795 MHz
	BeiDou B1I:	1561.098 MHz
	BeiDou B1C:	1575.42 MHz
	BeiDou B2I:	1207.14 MHz
	BeiDou B2a:	1176.45 MHz
	BeiDou B2b:	1207.14 MHz
	L-Band:	1545 to 1560 MHz

A.3 OEM7500 Absolute Maximum Ratings

Table 15: Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Units
V _{DD}	Digital core power supply voltage	-0.5	1.6	V
V _{CC}	Module power supply voltage	-0.5	4.6	V
USB_VBUS	USB VBUS	-0.5	5.25	V
V _I /V _O	Module Inputs / Outputs	-0.5	VCC +0.5V (≤4.6V)	V
V _{ESD}	Static discharge (HBM)		2000	V
P _{RFin}	Input power at RF_in (Source impedance 50Ω, continuous wave)		10	dBm
T _{storage}	Storage temperature	-55	95	°C

The absolute maximum ratings shown above indicates the absolute maximum ratings for the module. Stresses outside of these limits may result in permanent damage to the device. Functional operation of the device is not implied or guaranteed under these conditions.

A.4 OEM7500 Data Communication Specifications

Table 16: Data Communications Interface

COM1			
Electrical format	LVCMOS		
Data rates ¹	2400, 4800, 9600 (default), 19200, 38400, 57600, 115200, 230400 or 460800 bit/s.		
Signals supported	COM1_Tx, COM1_Rx		
Electrostatic discharge protection	Yes		
	COM2		
Electrical format	LVCMOS		
Data rates ¹	2400, 4800, 9600 (default), 19200, 38400, 57600, 115200, 230400 or 460800 bit/s.		
Signals supported	COM2_Tx, COM2_Rx		
Electrostatic discharge protection	Yes		
	СОМЗ		
Electrical format	LVCMOS		
Data rates ¹	2400, 4800, 9600 (default), 19200, 38400, 57600, 115200, 230400 or 460800 bit/s.		
Signals supported	COM3_Tx, COM3_Rx		
Electrostatic discharge protection	Yes		
	CAN Bus		
Electrical Format	LVCMOS		
Data rates	Mbps maximum. CAN Bus throughput is determined by slowest device on the bus		
Signals supported	CAN1(+), CAN1(-)		
	USB		
Electrical format	Conforms to USB 2.0		
Data rates	Full-speed (12 Mb/s)		
Signals supported	USB D+, USB D-		

¹Data rates higher than 115200 bit/s are not supported by standard PC hardware. Special PC hardware may be required for higher rates, including 230400 bit/s and 460800 bit/s.

²CAN Bus behavior must be asserted through the NovAtel API software.

