
OEM7
NovAtel API
User Manual

OEM7 NovAtel API User Manual v6 January 2020

OEM7 NovAtel API User Manual v6 2

OEM7 NovAtel API User Manual
Publication Number: OM-20000176

Revision Level: v6

Revision Date: January 2020

Firmware Versions:

l 7.07.03 / OM7MR0703RN0000
l PP7 07.07.04 / EP7PR0703RN0000

Proprietary Notice
The software described in this document is furnished under a license agreement or non-disclosure agreement.
The softwaremay be used or copied only in accordance with the terms of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the license or non-disclosure agreement.

Information in this document is subject to change without notice and does not represent a commitment on the
part of NovAtel Inc. The information contained within this manual is believed to be true and correct at the time of
publication.

NovAtel, ALIGN, GLIDE, GrafNav/GrafNet, Inertial Explorer, NovAtel CORRECT, OEM7, PwrPak7, RELAY,
SPAN, STEADYLINE, VEXXIS andWaypoint are registered trademarks of NovAtel Inc.

NovAtel Connect, OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, SMART7, SMART2,
RELAY7 and RTK ASSIST are trademarks of NovAtel Inc.

All other brand names are trademarks of their respective holders.

Lua.org license page: www.lua.org/license.html

© Copyright 2020 NovAtel Inc. All rights reserved. Unpublished rights reserved under International copyright
laws.

© Copyright 1994-2017 Lua.org, PUC-Rio Lua 5.3.4

Unpublished rights reserved under International copyright laws.

https://www.lua.org/license.html

OEM7 NovAtel API User Manual v6 3

Table of Contents

Customer Support

Chapter 1 Overview
1.1 Features 6
1.2 Materials Provided – NovAtel API 6
1.3 Requirements to Use NovAtel API 6
1.4 Compatibility with Applications Built for OEM6Receivers 7

Chapter 2 Concepts
2.1 Required FirmwareModel 8
2.2 Getting Started with Lua 9
2.3 Using SCOM Ports 9
2.4 Sending Data Out a Receiver Port Using SEND or SENDHEX 10
2.5 Using a Tunnel to TakeOver a Port 11

Chapter 3 Learning Lua
3.1 Online Documentation 13
3.2 Creating A Custom NovAtel Style Log 13
3.3 Modules 16

Chapter 4 Loading and Running the Application
4.1 Packaging the Application 18
4.2 Loading the Application 19
4.3 Running the Application 20

4.3.1 Lua Start 20
4.3.2 Lua Prompt 21
4.3.3 Single Line Lua Program 22
4.3.4 Passing Arguments into Lua 22
4.3.5 Starting a Script Automatically 23

Chapter 5 Debugging and Testing
5.1 ZeroBrane Studio 25
5.2 On Target vs. Off Target Debugging 25
5.3 On Target Debugging 26

5.3.1 Prerequisites 26
5.3.2 PC and Receiver Setup 26

Chapter 6 Additions and Limitations
6.1 Additions 30
6.2 Limitations 30

OEM7 NovAtel API User Manual v6 4

Chapter 7 Lua Commands
7.1 LUA 32

Chapter 8 Lua Logs
8.1 LUAFILELIST 35
8.2 LUAFILESYSTEMSTATUS 36
8.3 LUAOUTPUT 37
8.4 LUASTATUS 38

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver
9.1 USERI2CREAD 40
9.2 USERI2CWRITE 42
9.3 USERI2CRESPONSE 44

OEM7 NovAtel API User Manual v6 5

Customer Support

If you have any questions or comments regarding your OEM7 product, contact NovAtel Customer Service.

Log a support request with NovAtel Customer Support using one of the followingmethods:

Log a Case and Search Knowledge:

Website: www.novatel.com/support

Log a Case, Search Knowledge and View Your Case History: (login access required)

Web Portal: https://novatelsupport.force.com/community/login

E-mail:

support@novatel.com

Telephone:

U.S. and Canada: 1-800-NOVATEL (1-800-668-2835)

International: +1-403-295-4900

Lua Language
Contact Lua by visiting their web site: www.lua.org/contact.html

Additional NovAtel Documentation
To view the complete OEM7 suite of user documentation, go to the NovAtel OEM7Receiver Documentation
Portal at: docs.novatel.com/oem7

http://www.novatel.com/support
https://novatelsupport.force.com/community/login
mailto:support@novatel.com
https://www.lua.org/contact.html
https://docs.novatel.com/oem7

OEM7 NovAtel API User Manual v6 6

Chapter 1 Overview
NovAtel API is used to develop specialized applications using the Lua programming language to further extend
the functionality of the OEM7 family receiver. Lua scripts created by customers run alongside the core receiver
firmware using an embedded Lua script interpreter. The scripts can interact with the core firmware by sending
commands to the receiver and retrieving logs for processing.

1.1 Features
NovAtel API provides the following features:

l Powerful scripting capability using Lua, a popular scripting language for embedded applications

l Dedicated sockets allowing Lua scripts to directly send commands to and receive logs from the receiver firm-
ware

l Special Tunneling Ports provide access to physical ports on the receiver

Lua scripts can be used to:

l Create customized logs to be sent out a communication port

l Intercept the command stream for creating and interpreting custom commands

1.2 Materials Provided – NovAtel API
NovAtel API supports:

l The utility programs TOSREC, DATABLK and MKISOFS, which are utilities used to create an ISO9660 file sys-
tem image and format that image for use with a NovAtel receiver

l Examples

l Release Notes. The Release Notes should be read carefully to understand changes made since the last
release.

l ZeroBrane Lua Integrated Development Environment (IDE)

1.3 Requirements to Use NovAtel API
In addition to the items provided with NovAtel API, the following items are required to create and run a Lua applic-
ation on anOEM7 family receiver:

l A PC is required to write the application files and run the utilities that package the Lua scripts for use on the
receiver

l The PC requires a connection to the receiver (serial port, USB, Ethernet, etc.) to load the application onto the
receiver

l OEM7 family receiver running OM7MR0500RN0000 (7.05.00) firmware or higher, or a PwrPak7 receiver run-
ning PP7 07.07.04 / EP7PR0703RN0000 firmware or higher, loaded with a user application enabled software
model

l In addition to this manual, the NovAtel OEM7Receiver User Documentation Portal
(docs.novatel.com/oem7) is an online reference for other OEM7 receiver information. PDF versions of manu-
als are available for download from this location as well.

The Lua interpreter is present on the receiver, so no compiler or specialized development tools are needed to cre-
ate an application. However, a Lua development environment called ZeroBrane is provided within NovAtel API.

https://docs.novatel.com/oem7

Chapter 1 Overview

OEM7 NovAtel API User Manual v6 7

TheOEM7 receiver contains version 5.3.4 of the Lua interpreter. Be sure that any offline development
is done using this version of the Lua interpreter.

1.4 Compatibility with Applications Built for OEM6 Receivers
Existing applications, created for the OEM6 family of receivers, are not compatible with the OEM7 family receiv-
ers and will need to be redesigned and written as a Lua script. Some functionality that was available in the OEM6
Application Programming Interface will not be available for Lua scripts. Consult the release notes for functional
compatibility with the OEM6Application Programming Interface.

OEM7 NovAtel API User Manual v6 8

Chapter 2 Concepts
“Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural programming,
object-oriented programming, functional programming, data-driven programming, and data description.” (quoted
from www.lua.org/about.html)

A Lua interpreter has been embedded into the OEM7 firmware and can be used to add additional functionality to
the OEM7 receiver. Using Lua's native socket module, a script can connect to a virtual NovAtel port (SCOM) to
communicate with the receiver using the standard NovAtel commands and logs.

2.1 Required Firmware Model
To use the Lua interpreter, a model supporting user applications is required. This is indicated by a trailing "A" in
themodel name and can be confirmed using theMODELFEATURES log, whichmust show that the user applic-
ation (API) is AUTHORIZED.

Here is an example of amodel with a trailing "A" that supports the user application:

log version
<OK
[COM2]<VERSION COM2 0 92.5 UNKNOWN 0 2352.778 02444020 3681 14581
< 3
< GPSCARD "DDNRNNCBNA" "BMHR16370009M" "OEM7700-1.00"
"OM7MR0400AN0001" "OM7BR0000RB0000" "2018/Jan/09" "07:58:45"
< OEM7FPGA "" "" "" "OMV070001RN0000" "" "" ""
< DB_LUA_SCRIPTS "SCRIPTS" "Block1" "" "SAMPLE1" "" "2018/Jan/22"
"14:19:44"
[COM2]

log modelfeatures
<OK
[COM2]<MODELFEATURES COM2 0 90.5 UNKNOWN 0 2358.402 02444020 141a 14581
< 20
< 100HZ MAX_MSR_RATE
< 100HZ MAX_POS_RATE
< SINGLE ANTENNA
< AUTHORIZED MEAS_OUTPUT
< AUTHORIZED DGPS_TX
< AUTHORIZED RTK_TX
< AUTHORIZED RTK_FLOAT
< AUTHORIZED RTK_FIXED
< AUTHORIZED PPP
< AUTHORIZED LOW_END_POSITIONING
< AUTHORIZED RAIM
< AUTHORIZED API
< AUTHORIZED NTRIP
< UNAUTHORIZED IMU
< UNAUTHORIZED INS
< UNAUTHORIZED ALIGN_HEADING
< UNAUTHORIZED ALIGN_RELATIVE_POS
< UNAUTHORIZED INTERFERENCE_MITIGATION
< UNAUTHORIZED RTKASSIST
< UNAUTHORIZED SCINTILLATION
[COM2]

http://www.lua.org/about.html

Chapter 2 Concepts

OEM7 NovAtel API User Manual v6 9

2.2 Getting Started with Lua
To quickly start the Lua interpreter, connect to any port of the OEM7 receiver and send the command LUA
PROMPT. This will do two things:

1. Change the InterfaceMode of the port that received the command to LUA. In the example below, that's
COM1.

2. Start the Lua interpreter

Interfacemode LUA establishes a connection between the COM port and the Lua interpreter's stdin,
stdout and stderr. This connection allows commands to be typed directly to the Lua interpreter (stdin)
and the output from print statements is sent to the COM port. For more information, see Loading and
Running the Application on page 18.

From there, Lua commands can be entered as shown below.

lua prompt
<OK
[COM1]Lua 5.3.4 Copyright (C) 1994-2017 Lua.org, PUC-Rio
>
>
> print("Hello World")
Hello World
>
> Var1 = 1
> Var2 = 2
> print(Var1+Var2)
3
>

NovAtel Connect's ConsoleWindow cannot be used for this purpose because it depends on the port
remaining in the NOVATEL InterfaceMode. The terminal emulators TeraTerm or Hyperterm can be
used:
https://ttssh2.osdn.jp/index.html.en
https://hyperterminal-private-edition-htpe.en.softonic.com/download

For details on the Lua language, referencemanuals can be found at www.lua.org. TheOEM7 receiver uses Lua
version 5.3.4.

2.3 Using SCOM Ports
Lua interacts with the rest of the OEM7 receiver using SCOM ports. SCOM ports are similar to ICOM ports,
except they have fixed socket port numbers and use only UDP.

The Lua socket library is compiled into the OEM7 receiver and is used to communicate with the SCOM ports.
Details on the Lua socket library can be found here: https://github.com/diegonehab/luasocket

These are the steps to setup an SCOM connection in Lua.

1. Use the Lua require function to initialize the socket library.

SocketLib = require("socket")

https://ttssh2.osdn.jp/index.html.en
https://hyperterminal-private-edition-htpe.en.softonic.com/download
http://www.lua.org/
https://github.com/diegonehab/luasocket

Chapter 2 Concepts

OEM7 NovAtel API User Manual v6 10

2. Use the socket library to get an instance of a UDP object.

SocketSCOM1 = SocketLib.udp()

UDP communication is used to improve performance. Although the UDP protocol is normally
considered "unreliable" over Ethernet, it is very reliable and efficient for connections on a
local host.

3. Setup the socket.

l Since the Lua interpreter is running on theOEM7 receiver, use the localhost (127.0.0.1) IP address.

l Use the NovAtel-added scommodule to convert from the SCOM number to the socket port number.

l Wrap the calls with the assert function to check for errors.

assert(SocketSCOM1:setsockname("*",0))

assert(SocketSCOM1:setpeername("127.0.0.1",scom.GetSCOMPort(1)))

assert(SocketSCOM1:settimeout(3))

4. The socket is now ready to send and receive data. Use the :send()method to issue a command to the
receiver through the SCOM socket. Use the :receive()method to retrieve the receiver's response to the
command and also to receive the requested logs or other data from the receiver.

This example shows how to use the socket object created above to collect a VERSIONA log:

SocketSCOM1:send("log versiona\r")

while(true) do
 Buffer = SocketSCOM1:receive()
 if Buffer == nil then
 print("... timed out")
 break
 end
 print("> ", Buffer)
end

2.4 Sending Data Out a Receiver Port Using SEND or SENDHEX
The Lua interpreter uses the standard NovAtel commands and logs and therefore does not have special access
to the ports on the receiver. However, theSEND command andSENDHEX command can be used to output
data on any desired receiver port. This is themethod to use when other NovAtel logs are coming out of the port.
Data sent using the SEND or SENDHEX commands will not corrupt the other logs on the port.

Here is a simple example of how to do this:

SocketLib = require("socket")
SocketSCOM1 = SocketLib.udp()

assert(SocketSCOM1:setsockname("*",0))
assert(SocketSCOM1:setpeername("127.0.0.1",scom.GetSCOMPort(1)))
assert(SocketSCOM1:settimeout(3))
SocketSCOM1:send("send com2 \"Hello World\n\"\r")
SocketSCOM1:send("sendhex com2 12 48656C6C6F20576F726C640A\r")

Chapter 2 Concepts

OEM7 NovAtel API User Manual v6 11

In this example, the script opens up SCOM1 and then uses theSEND command to send "HelloWorld\n" as a
string and then uses theSENDHEX command to send the equivalent hex data. When the script is run, two
instances of "HelloWorld\n" are output on COM2:

[COM2]Hello World

Hello World

Note the use of backslashes to escape special characters to form a string within a string.

2.5 Using a Tunnel to Take Over a Port
An alternative to the SEND / SENDHEX commands is to establish a tunnel between an SCOM port and an
external port. In this configuration, all data sent into the SCOMwill be output on the external port and all data on
the external port will be sent out the SCOM.

Below is a simple example, which sets up an echo on COM2. For amore extensive example of taking over a
port, see the intercept.lua script within the sample scripts folder of the development kit.

SocketLib = require("socket")

-- Use SCOM1 for commands and logs
local SocketSCOM1 = SocketLib.udp()
-- Use SCOM2 for the tunnel
local SocketSCOM2 = SocketLib.udp()

-- Setup the sockets
TargetIP = "127.0.0.1"

assert(SocketSCOM1:setsockname("*",0))
assert(SocketSCOM1:setpeername(TargetIP,scom.GetSCOMPort(1)))
assert(SocketSCOM1:settimeout(3))

assert(SocketSCOM2:setsockname("*",0))
assert(SocketSCOM2:setpeername(TargetIP,scom.GetSCOMPort(2)))
-- No time out on SCOM2

-- Create function to send a command and wait for a prompt
-- Returns the prompt on success, nil on failure
function WaitForPrompt(SocketSCOM_)
 while true do
 local Buffer = SocketSCOM_:receive()
 if Buffer == nil then
 print("Timed out")
 return nil
 end

 local Start,Stop,Prompt = Buffer:find("(%[SCOM%d%])")

 if Prompt ~= nil then
 print("Prompt Received: ",Prompt)
 return Prompt
 end
 end

 return nil
end

Chapter 2 Concepts

OEM7 NovAtel API User Manual v6 12

-- Send a one-byte packet to SCOM2 so that it knows the IP address of the
machine
-- running the Lua script
SocketSCOM2:send("\r")

-- Setup the tunnel on the SCOM2 side
SocketSCOM1:send("interfacemode scom2 tcom2 none\r")
assert(WaitForPrompt(SocketSCOM1))

-- Setup the tunnel on the COM2 side
SocketSCOM1:send("interfacemode com2 tscom2 none\r")
assert(WaitForPrompt(SocketSCOM1))
SocketLib.sleep(1)

-- Setup an echo loop
-- This will have the effect that if the user enters characters
-- on COM2, they will be echoed back
while true do
 -- Receive characters from SCOM2
 local Buffer = SocketSCOM2:receive(1)
 print ("Buffer: ",Buffer)
 -- Echo those characters back to SCOM2
 SocketSCOM2:send(Buffer)
end

SCOM andConnectionless UDP

TheUDP communication used on the SCOM ports is connectionless, whichmeans that the
SCOM side does not know the IP address of the Lua interpreter until the Lua interpreter has sent
a byte to the SCOM. Therefore, no data will be received on an SCOM until a byte has been sent
to it.

That's why in the example above, a one-byte packet is sent to SCOM2 before attempting to
receive on the socket.

OEM7 NovAtel API User Manual v6 13

Chapter 3 Learning Lua

3.1 Online Documentation
An introduction to programing in Lua is available on lua.org here: www.lua.org/pil/contents.html. This free online
version is based on Lua version 5.0, but it remains a good starting point for developers new to the language.

Newer versions of the programming guide are available for purchase.

3.2 Creating A Custom NovAtel Style Log
The Lua string library can be used to parse NovAtel ASCII logs and create new custom logs. The example below
shows how to do that. Note the following:

l The string.find function is used to split the TIMEA log into its header and data.

l The string.gmatch function is then used to split up the individual comma-separated data fields. The data
fields are then stored into table, which can be used as required.

l The string.format function is used to format a new log.

A tutorial on the Lua String Library can be found here: www.lua.org/pil/20.html.

The full script, as well as the required crc32.luamodule is available in the Lua Dev Kit.

--
**
-- Parse a string, looking for a TIMEA log
-- Inputs:
-- Buffer_ String containing input data

-- Returns:
-- nil if no TIMEA log is found
-- A table representing the data of a TIMEA log if a log is found
--
**
function ParseTIMEA(Buffer_)

 -- Search for a TIMEA log.
 -- string.find returns the start and stop index as well as any strings that
are "captured" within the parentheses
 local FindTIMEAStart
 local FindTIMEAStop
 local TIMEAHeader
local TIMEAData

 FindTIMEAStart,FindTIMEAStop, TIMEAHeader,TIMEAData
 = Buffer_:find("#(TIMEA[^;]*;)([^%*]*%*).-\n")

 if FindTIMEAStart ~= nil then
 -- Found a TIMEA log

 -- split the header into its elements
 local HeaderIter = TIMEAHeader:gmatch("([^,]-)[,%;]")
 HeaderData = {}
 HeaderData['Message'] = HeaderIter()
 HeaderData['Port'] = HeaderIter()

https://www.lua.org/pil/contents.html
https://www.lua.org/pil/20.html

Chapter 3 Learning Lua

OEM7 NovAtel API User Manual v6 14

 HeaderData['Sequence'] = HeaderIter()
 HeaderData['IdleTime'] = HeaderIter()
 HeaderData['TimeStatus'] = HeaderIter()
 HeaderData['Week'] = HeaderIter()
 HeaderData['Second'] = HeaderIter()
 HeaderData['ReceiverStatus'] = HeaderIter()
 HeaderData['Reserved'] = HeaderIter()
 HeaderData['ReceiverSWVersion'] = HeaderIter()

 -- Split the data into its elements
 -- gmatch returns an iterator function that can be called successively to
get
 -- the next string matching the pattern.
 local DataIter = TIMEAData:gmatch("([^,]-)[,%*]")

 -- Create a table for the Time Data and assign the data fields into that
table
 TimeData = {}
 TimeData['Header'] = HeaderData
 TimeData['ClockStatus'] = DataIter()
 TimeData['Offset'] = DataIter()
 TimeData['OffsetStd'] = DataIter()
 TimeData['UTCOffset'] = DataIter()
 TimeData['UTCYear'] = DataIter()
 TimeData['UTCMonth'] = DataIter()
 TimeData['UTCDay'] = DataIter()
 TimeData['UTCHour'] = DataIter()
 TimeData['UTCMinute'] = DataIter()
 TimeData['UTCMillisecond'] = DataIter()
 TimeData['UTCStatus'] = DataIter()

 return TimeData
 end
 -- NOTE: There is an implicit return of nil for Lua functions
 -- that do not otherwise return a value
end

--
**
-- Create a custom NovAtel-like log based on data from a TIMEA log that
contains
-- the UTC Month
 -- Inputs:
 -- TimeData_ String containing input data

 -- Returns:
 -- Custom Log String
--
**
local function CreateMonthLog(TimeData_,OutputPort_)
 local HeaderData = TimeData_['Header']

 local MonthTable = {
'January','February','March','April','May','June','July','August','September','
October','November','December' }

Chapter 3 Learning Lua

OEM7 NovAtel API User Manual v6 15

 -- Setup the Header and Data.
 -- Leave out the leading # and trailing * as they are not included in the CRC
 local CustomLog =
 string.format("MONTHA,%s,%s,%s,%s,%s,%s,%s,%s,%s;%s",
 OutputPort_, -- Note that the port is updated to the port
where this log will be sent
 HeaderData['Sequence'],
 HeaderData['IdleTime'],
 HeaderData['TimeStatus'],
 HeaderData['Week'],
 HeaderData['Second'],
 HeaderData['ReceiverStatus'],
 HeaderData['Reserved'],
 HeaderData['ReceiverSWVersion'],
 MonthTable[tonumber(TimeData['UTCMonth'])])

 -- the crc32.lua script is included with the NovAtel Lua Dev Kit
 local CRC = require("crc32").CalculateBlock(CustomLog,0)

 -- Format together the leading #, the log data, the trailing * and calculated
CRC.
 return string.format("#%s*%08x",CustomLog,CRC)
end
--
**
-- Request TIMEA logs on SCOM1, parse them and produce a new NovAtel-like
custom log
-- Inputs:
-- arg[1] String representing the output port (e.g. 'COM1')
--
**
local function main()

 local OutputPort = arg[1]

 if OutputPort == nil then
 print("No Output Port Specified")
 return
 end

 local SocketLib = require("socket")
 local SocketSCOM1 = SocketLib.udp()
 -- Setup the sockets
 local TargetIP = "127.0.0.1"

 assert(SocketSCOM1:setsockname("*",0))
 assert(SocketSCOM1:setpeername(TargetIP,require("scom").GetSCOMPort(1)))
 assert(SocketSCOM1:settimeout(3))

 -- Request the TIMEA log on SCOM1
 SocketSCOM1:send("LOG TIMEA ONTIME 1\r")
while true do
 -- Wait for TIMEA Logs
 local Buffer = SocketSCOM1:receive()
 if Buffer == nil then

Chapter 3 Learning Lua

OEM7 NovAtel API User Manual v6 16

 print("... timed out")
 break
 end

 local TimeData = ParseTIMEA(Buffer)

 if TimeData ~= nil then
 -- Uncomment the lines below to dump out the parsed TIMEA data
-- for Key,Value in pairs(TimeData) do
-- if type(Value) == "table" then
-- print(string.format("%s:",Key))
-- for SubKey,SubValue in pairs(Value) do
-- print(string.format(" %s: \"%s\"",SubKey,SubValue))
-- end
-- else
-- print(string.format("%s: \"%s\"",Key,Value))
-- end
-- end
-- print("------------------------\n")

 -- Format the new log
 local MonthLog = CreateMonthLog(TimeData,OutputPort)

 -- Send the log out the port
 -- Note in firmware version OM7MR0500RN0000 the SEND command can only
 -- send 100 bytes at once. That is sufficient for this example, but
 -- in an actual use case the log should be sent out in 100 byte chunks.
 SocketSCOM1:send(string.format('send %s \"%s\"\r',OutputPort,MonthLog))
 end
 end
end
--
**
main()

3.3 Modules
Lua code can be located inmultiple files and loaded as modules using the require function. Modules allow the
user to group functionally related code in one file, and have other files import and use this functionality.

A module is loaded by passing in the name of the file without the .lua extension to the require function. A descrip-
tion of the require function can be found here: www.lua.org/pil/8.1.html.

The following example shows code from two files, mymodule.lua and use_mymodule.lua. These two script files
can be packaged together and loaded onto the receiver using the steps in Loading and Running the Application
on page 18.

-- File mymodule.lua
-- This is an example of creating a module called mymodule, which provides a
single function, mymodule.example_func()
-- which can be used by other scripts that import this module.

-- Create an empty table, which acts as the container for the module.
local mymodule = {}

-- Create a function that is available for the module.

https://www.lua.org/pil/8.1.html

Chapter 3 Learning Lua

OEM7 NovAtel API User Manual v6 17

function mymodule.example_func()
 print("Hello from mymodule.example_func()")
end

return mymodule

-- File use_mymodule.lua
-- Import the functionality from the file mymodule.lua.
local mymodule = require("mymodule")

print("Hello from use_mymodule.lua")
mymodule.example_func()

Files can also be placed in subdirectories and loaded by specifying the path to the file in the require function.
The path is specified as the directory name followed by a . and appending the filename of themodule without the
.lua extension. The following example shows amodule located in a subdirectory called testdir being loaded using
the require function.

-- File /testdir/mymodule.lua

-- This is an example of creating a module called mymodule2, which provides a
single function, mymodule.example_func()
-- which can be used by other scripts that import this module.

local mymodule2 = {}

function mymodule2.example_func()
 print("Hello from mymodule2.example_func()")
end

return mymodule2
-- File use_mymodule2.lua
-- Import the functionality from the file mymodule2.lua. Note that the require
function
-- needs the testdir path to import the file correctly.

local mymodule2 = require("testdir.mymodule2")

print("Hello from use_mymodule2.lua")
mymodule2.example_func()

Additional information on Luamodules can be found here: lua-users.org/wiki/ModulesTutorial.

http://lua-users.org/wiki/ModulesTutorial

OEM7 NovAtel API User Manual v6 18

Chapter 4 Loading and Running the Application
Lua scripts can be deployed onto a NovAtel receiver and run using the LUA command (see page 32). The scripts
are assembled into an ISO image, which is then written to a Data Block of the non-volatile storage within the
receiver.

4.1 Packaging the Application
In order to load Lua scripts onto a NovAtel receiver, the scripts must first be packaged up into a .hex file. Follow
the steps below to create this package:

1. Place all the scripts to be loaded into a folder on a PC. This example will use C : \MYLUAPROJECT .

2. Download the NovAtel API.

3. Open a command prompt within the utilities directory of the Lua Dev Kit and use themake_iso_hex.bat
batch file to create the .hex image. Usage for the script can be found by calling it with no arguments as
shown below:

C:\luadevkit\utilities>make_iso_hex.bat
There are less than 4 arguments.
Usage: make_iso_hex.bat <source directory> <destination file> <version> <data
block> [platforms]
where:
 <source directory> - directory to be made into ISO file
 <destination file> - output path and filename
 <version> - version string for the output file, up to 15 characters
 <data block> - Flash DataBlock number, 0-7

[platforms] - Optional list of supported platforms, separated by spaces.
 Eg, OEM729 OEM7700 OEM7600

Here are somemore details on the arguments:

Argument Notes

<source
directory> This is the directory containing the Lua scripts

<destination
file> Full path name for the output file

<version> User-determined version string to use for the .hex file. This string will be reported within the
VERSION log the receiver

<data block> Set this to 1

[platforms] This is optional and can typically be left blank

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v6 19

Example:
C:\luadevkit\utilities>make_iso_hex.bat c:\myluaproject ..\debuglooplua.hex
1.00 1
Create ISO file...
Warning: creating filesystem that does not conform to ISO-9660.
Total translation table size: 0
Total rockridge attributes bytes: 0
Total directory bytes: 114
Path table size(bytes): 10
25 extents written (0 MB)

Create HEX file...

Set DataBlk...
*
* datablk - NovAtel Inc. data block utility n
* Executable Version: 2.28
* Header Version: 2
*
Processing \luadevkit\debuglooplua.iso.nodb.hex to \luadevkit\debuglooplua.hex
Success \luadevkit\debuglooplua.hex is ready to be programmed into flash.

ISO Image Limitations

There are a few limitations with the ISO image format used to package up the Lua scripts.

l There is amaximum directory depth of 8, including the root

l Themaximum file name length is 27 characters plus a 4 character extension for a total of 31
characters

l Themaximum directory name is 31 characters

4.2 Loading the Application
Once the Lua scripts have been packaged up into a .hex file, they can be loaded onto the receiver. UseWinLoad
or SoftLoad commands to load the .hex file. Refer to Updating or Upgrading Using theWinLoad Utility or Updat-
ing Using SoftLoad Commands in the OEM7 Installation andOperation User Manual.

The presence of the Lua scripts can be verified as follows:

1. Check theVERSION log:

log version

<OK
[COM1]<VERSION COM1 0 90.5 UNKNOWN 0 138.554 02444020 3681 14581
< 3
< GPSCARD "DDNRNNCBNA" "BMHR16370009M" "OEM7700-1.00"
"OM7MR0400AN0001" "OM7BR0000RB0000" "2018/Jan/09" "07:58:45"
< OEM7FPGA "" "" "" "OMV070001RN0000" "" "" ""
< DB_LUA_SCRIPTS "SCRIPTS" "Block1" "" "1.00" "" "2018/Jan/10"
"10:53:48"
[COM1]

https://docs.novatel.com/oem7/Content/PDFs/OEM7_Installation_Operation_Manual.pdf

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v6 20

If a Lua Scripts package has been loaded on to the receiver, it will be reported with a Component Type of
DB_LUA_SCRIPTS. The "sw version" field reports the version string that was passed in tomake_iso_
hex.bat.

2. Check the LUAFILESYSTEMSTATUS log (see page 36).

log LUAFILESYSTEMSTATUS

<OK
[COM1]<LUAFILESYSTEMSTATUS COM1 0 89.5 UNKNOWN 0 0.194 02444020 b8f8
14581
< MOUNTED ""
[COM1]

If the LUAFILESYSTEMSTATUS log reports that the file system is mounted, the ISO image within the
package was successfully mounted. This happens automatically at system startup; there are no com-
mands required tomount this file system.

3. Check the LUAFILELIST log (see page 35).
log LUAFILELIST

<OK
[COM1]<LUAFILELIST COM1 0 89.5 UNKNOWN 0 992.000 02444020 b447 14581
< 155 20180110 92730 "/lua/debugloop.lua"
[COM1]

If the LUAFILELIST log shows a file, it is available to the Lua interpreter.

4.3 Running the Application
The LUA command (see page 32) is used to start the Lua interpreter.

To run a Lua script in the background, with no access to stdin, stdout and stderr, use LUA START.

To run the Lua interpreter in interactivemode with stdin, stdout and stderr connected to a receiver port, use LUA
PROMPT.

The interpreter is started within the /lua working directory so scripts within that directory can be referenced dir-
ectly, without a path.

4.3.1 Lua Start
To execute a Lua script in the background use the LUA START option.

lua start helloworld.lua

<OK
[COM1]

log luastatus

<OK
[COM1]<LUASTATUS COM1 0 88.0 UNKNOWN 0 52.479 02444020 afcc 32768
< 0 "helloworld.lua" COMPLETED
[COM1]

log luaoutput

<OK
[COM1]<LUAOUTPUT 0 47.462
< 1 0 STDOUT "Hello World!"
<LUAOUTPUT 0 48.464
< 2 0 STDOUT "Hello again 1"

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v6 21

<LUAOUTPUT 0 49.465
< 3 0 STDOUT "Hello again 2"
<LUAOUTPUT 0 50.467
< 4 0 STDOUT "Hello again 3"
<LUAOUTPUT 0 51.468
< 5 0 STDOUT "Hello again 4"
<LUAOUTPUT 0 52.469
< 6 0 STDOUT "Hello again 5"
<LUAOUTPUT 0 52.470
< 7 0 STDOUT "Good Bye"
[COM1]

Note that the print statements within the script are output in the LUAOUTPUT log (see page 37). Also, note that
the LUASTATUS log (see page 38) shows that the script has completed.

4.3.2 Lua Prompt
To execute a Lua script with stdin, stdout and stderr connected to a receiver port, use the LUA PROMPT option.
The print strings are output on the port where the LUA command (see page 32) was entered.

Example:

lua prompt helloworld.lua
Lua 5.3.4 Copyright (C) 1994-2017 Lua.org, PUC-Rio
Hello World!
Hello again 1
Hello again 2
Hello again 3
Hello again 4
Hello again 5
Good Bye
>
<OK
[COM1]

log luastatus

<OK
[COM1]<LUASTATUS COM1 0 88.0 UNKNOWN 0 52.479 02444020 afcc 32768
< 0 "helloworld.lua" COMPLETED
[COM1]

log luaoutput

<OK
[COM1]<LUAOUTPUT 0 47.462
< 1 0 STDOUT "Hello World!"
<LUAOUTPUT 0 48.464
< 2 0 STDOUT "Hello again 1"
<LUAOUTPUT 0 49.465
< 3 0 STDOUT "Hello again 2"
<LUAOUTPUT 0 50.467
< 4 0 STDOUT "Hello again 3"
<LUAOUTPUT 0 51.468
< 5 0 STDOUT "Hello again 4"
<LUAOUTPUT 0 52.469
< 6 0 STDOUT "Hello again 5"
<LUAOUTPUT 0 52.470
< 7 0 STDOUT "Good Bye"

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v6 22

[COM1]

On a different port (e.g. COM2) it can be seen that the INTERFACEMODE of COM1 has been changed to LUA.

log interfacemode

<OK
[COM2]<INTERFACEMODE COM2 29 97.0 UNKNOWN 0 25.700 0244c009 7a68 14581
< COM1 LUA LUA OFF
...

The LUASTATUS log (see page 38) also shows that the script is executing.

log luastatus

<OK
[COM2]<LUASTATUS COM2 0 96.5 UNKNOWN 0 25.705 0244c009 afcc 14581
< 0 "-i helloworld.lua" EXECUTING
[COM2]

4.3.3 Single Line Lua Program
The "-e" option can be used to run a single line Lua program. Here is an example using a simple print call.

[COM1]lua prompt "-e print('Hello World')"

<OK
[COM1]Lua 5.3.4 Copyright (C) 1994-2017 Lua.org, PUC-Rio
Hello World
>

4.3.4 Passing Arguments into Lua
To pass arguments into Lua, the script name and arguments must be enclosed within double quotes. The argu-
ments are stored within the arg variable in Lua, which is a table of strings.

The example below shows how to iterate through the arguments and demonstrates some of the implications of
the fact that the arguments are strings.

-- Print the script name
print(string.format('Script Name: "%s"',arg[0]))

FormatString = '%-10s%-10s%-15s%-15s'
print(string.format(FormatString,'Arg#','Type','String','Number'))

-- Iterate through the arguments
Sum = 0
NumberOfTwenties = 0
for i = 1,4 do
 -- Print some information about the argument
 -- NOTE: The type of these arguments is always "string"
 print(string.format(FormatString,i,type(arg[i]),arg[i],tonumber(arg[i])))

 -- Check if the string represents a number
 if (tonumber(arg[i]) ~= nil) then
 -- If the string represents a number, Lua will automatically
 -- convert the string to a number for arithmetic
 Sum = Sum + arg[i]
 end

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v6 23

 -- Since the arg values are always of type "string"
 -- a direct comparison with a number will always fail
 if (arg[i] == 20) then
 NumberOfTwenties = NumberOfTwenties + 1
 end
end
print('')
print(string.format("Sum of Number Arguments: %d",Sum))
print(string.format("Number of 20s found: %d",NumberOfTwenties))

Here is how to call this script using the LUA command (see page 32). Note how the string "20" is not considered
equal to the number 20.

lua prompt "scriptargs.lua 1 20 Hello 300"

<OK
[COM1]Lua 5.3.4 Copyright (C) 1994-2017 Lua.org, PUC-Rio
Script Name: "scriptargs.lua"
Arg# Type String Number
1 string 1 1
2 string 20 20
3 string Hello nil
4 string 300 300
Sum of Number Arguments: 321
Number of 20s found: 0
>

4.3.5 Starting a Script Automatically
To start Lua automatically when the receiver boots, add a file named "autoexec.lua" to the root directory of the
lua script package. This script will be executed when the receiver starts up. To run other scripts from the auto-
exec.lua script, use the dofile Lua command as shown in the example below.

Here is the content of an example hello.lua script:

Person1 = arg[1]
Person2 = arg[2]

print(string.format("%s says hello to %s",Person1,Person2))

Here is the content of an example autoexec.lua script:

arg[1] = "Alice"
arg[2] = "Bob"

dofile("hello.lua")

The autoexec.lua script sets up the command line arguments for the hello.lua script and then runs the script.

Here is the example in action:

log luastatus onchanged

<OK
[COM1]<LUASTATUS COM1 0 87.5 UNKNOWN 0 0.614 02444020 afcc 32768
< 0 "autoexec.lua" COMPLETED
[COM1]

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v6 24

log luaoutput onchanged

<OK
[COM1]<LUAOUTPUT 0 0.593
< 1 0 STDOUT "Alice says hello to Bob"
[COM1]saveconfig

<OK
[COM1]

reset

<OK
[COM1]
[COM1]<LUASTATUS COM1 0 13.0 UNKNOWN 0 1.234 02440000 afcc 32768
< 0 "autoexec.lua" COMPLETED
[COM1]<LUAOUTPUT 0 1.151
< 1 0 STDOUT "Alice says hello to Bob"
[COM1]

log luafilelist

<OK
[COM1]<LUAFILELIST COM1 1 84.5 UNKNOWN 0 32.000 02444020 b447 32768
< 55 20180613 105553 "/lua/autoexec.lua"
<LUAFILELIST COM1 0 87.5 UNKNOWN 0 32.000 02444020 b447 32768
< 97 20180613 105502 "/lua/hello.lua"
[COM1]

OEM7 NovAtel API User Manual v6 25

Chapter 5 Debugging and Testing

5.1 ZeroBrane Studio
ZeroBrane Studio is a lightweight Integrated Development Environment (IDE) for Lua. A version of ZeroBrane is
included in the NovAtel API that contains additions tomake creating and debugging Lua scripts on NovAtel
receivers easier.

The ZeroBrane Studio project website is studio.zerobrane.com/.

The ZeroBrane documentation on debugging can be found at: studio.zerobrane.com/doc-remote-debugging.

5.2 On Target vs. Off Target Debugging
There are twomain ways to debug Lua scripts for use on theOEM7 receiver:

l On Target:
The Lua interpreter on NovAtel receivers can be debugged using the ZeroBrane IDE via an Ethernet con-
nection to the receiver. In this method, the Lua interpreter on the target (i.e. the receiver) is executing the
script and the Lua interpreter on the host PC is just providing a debug server.

l Off Target:
The Lua interpreter within ZeroBrane Studio can execute a script and interact with the receiver via the SCOM
ports over an Ethernet connection.

The diagram below describes how the various pieces interact in bothmethods and the table that follows contains
more notes on the differences:

Debugging
Type

Lua
Interpreter

IP Address to
Use for SCOM Notes

On Target OnOEM7
Receiver 127.0.0.1 This environment more closely resembles how the Lua scripts

will be deployed in an end user use case.

Off Target On PC

IP Address of
OEMReceiver

See the
IPSTATUS log

Useful for quickly developing Lua scripts and testing non-real
time aspects of the code.

https://studio.zerobrane.com/
https://studio.zerobrane.com/doc-remote-debugging

Chapter 5 Debugging and Testing

OEM7 NovAtel API User Manual v6 26

SCOM Port Numbers

The NovAtel provided scommodule can be used to programatically determine socket port
numbers for the SCOM port. For more information, seeAdditions and Limitations on page 30.

See the table below for the port numbers:

SCOM Port Port Number

SCOM1 49154

SCOM2 49155

SCOM3 49156

SCOM4 49157

5.3 On Target Debugging
Version 1.70 of the ZeroBrane IDE is included within the NovAtel API under the zerobrane folder. This version
has been customized for use with NovAtel receivers. However, the stock version can be downloaded here: stu-
dio.zerobrane.com/support.

5.3.1 Prerequisites
Here are the prerequisites to enable NovAtel receiver on-target Lua debugging:

l AnOEM7 receiver running firmware 7.05.00 or later.

l A firmwaremodel supporting the user application.

l An Ethernet connection from a host PC to the receiver.

l The script to debugmust be available on both the PC and theOEM7 receiver.

Note that the mobdebug.lua script, which is used by ZeroBrane for remote debugging, is preloaded into the
Lua interpreter and does not need to be added to the Lua script package that is loaded onto the receiver.

5.3.2 PC and Receiver Setup
1. Download and install the ZeroBrane IDE to a PC.

2. Run ZeroBrane IDE (zbstudio.exe). The IDE will open up to a default Project containing some examples.

https://studio.zerobrane.com/support
https://studio.zerobrane.com/support

Chapter 5 Debugging and Testing

OEM7 NovAtel API User Manual v6 27

3. Switch to the Lua 5.3 - NovAtel interpreter, which is the version running on theOEM7. To do this, select Pro-
ject | Lua Interpreter | Lua 5.3 - NovAtel.

4. The Local console tab at the bottom can be used to experiment with the Lua syntax.

Example:
Welcome to the interactive Lua interpreter. Enter Lua code and press
Enter to run it. Use Shift-Enter for multiline code.
Use 'clear' to clear the shell output and the history. Use 'reset' to
clear the environment.
Prepend '=' to show complex values on multiple lines. Prepend '!' to
force local execution.
MyVar = 123
MyOtherVar = 456
print(MyVar+MyOtherVar)
579

5. On theOEM7 receiver, configure the network using theETHCONFIG command and IPCONFIG command,
and verify that a connection is possible. For example, use a terminal program to connect to an ICOM port
and request aVERSION log. For details on how to set this up see Ethernet Configuration in the OEM7
Installation andOperation User Manual.

6. On the PC where the ZeroBrane IDE is running, set the location where the scripts that were loaded onto the
receiver can be found. To do this select Project |Project Directory |Choose and select the folder. The con-
tents of the selected folder will be packaged and loaded onto the receiver, later in step 9. This example uses
the simple debugloop.lua script shown here:\

DebugHostIP = arg[1]

https://docs.novatel.com/oem7/Content/PDFs/OEM7_Installation_Operation_Manual.pdf
https://docs.novatel.com/oem7/Content/PDFs/OEM7_Installation_Operation_Manual.pdf

Chapter 5 Debugging and Testing

OEM7 NovAtel API User Manual v6 28

LoopCount = 0

require('mobdebug').start(DebugHostIP)

while 1 do
 print(LoopCount)
 socket.sleep(1)
 LoopCount = LoopCount + 1
 end

7. Place a break-point in the script by clicking to the left of the code line as shown below:

8. Turn on the ZeroBrane debug server. To do this ensure that Project |Start Debug Server is checked.

9. Create a Lua script package from the project directory and load it onto the receiver using the steps described
in Loading and Running the Application on page 18.

10. TheOEM7 receiver should now have the same Lua script available to it as the ZeroBrane IDE does. Verify
this using the LUAFILESYSTEMSTATUS log (see page 36) and LUAFILELIST log (see page 35).

log luafilesystemstatus onchanged

<OK
[COM1]<LUAFILESYSTEMSTATUS COM1 0 91.0 UNKNOWN 0 0.343 02444020 b8f8
14581
< MOUNTED ""

log luafilelist

<OK
[COM1]<LUAFILELIST COM1 0 89.0 UNKNOWN 0 54.000 02444020 b447 14581
< 176 20180122 141649 "/lua/debugloop.lua"

Chapter 5 Debugging and Testing

OEM7 NovAtel API User Manual v6 29

[COM1]

11. Start the Lua script, passing the IP address of the PC running ZeroBrane, as the argument. The Lua inter-
preter will reach out to the debugger running on the host PC to establish the debugging connection.

lua prompt "debugloop.lua 198.161.68.53"
<OK
[COM1]Lua 5.3.4 Copyright (C) 1994-2017Lua.org, PUC-Rio
0
1
2
3
4
5

The ZeroBrane IDE will then be able to control the Lua interpreter on the receiver:

12. Use the debugging controls within the IDE to step through the code and set break points.

OEM7 NovAtel API User Manual v6 30

Chapter 6 Additions and Limitations
This chapter describes some of the ways that the Lua interpreter running on theOEM7 receiver is different than a
standard Lua interpreter.

6.1 Additions
l Themobdebugmodule is preloaded to facilitate debugging.

l Helpmessages are available for some functions. Use the H() function within the receiver Lua prompt to
view help.

l The crc32module was created by NovAtel to generate CRCs for NovAtel messages. Use H(crc32) on the
receiver Lua prompt for more details.

l The scommodule was created by NovAtel as convenience functions to access the SCOM ports. Use H
(scom) on the receiver Lua prompt for more details.

l If a Lua script has been started with the LUA PROMPT command, it can be stopped using the os.exit()
Lua command.

l A 64 kB RAM disk has been provided to the Lua interpreter at the location /tmp.

l The os.tmpname() function will return a unique file namewithin /tmp.

l Some environment variables have been added to the Lua interpreter running on theOEM7 receiver. They can
be accessed using the os.getenv() function and are defined as follows:

l "ONTARGET" is set to "true".
l "GPSCARD_PSN" is set to the receiver PSN.
l "ENCLOSURE_PSN" is set to the receiver's enclosure PSN, if one is set.

6.2 Limitations
l The C User Application is not available to customers. That is, customers cannot write C code or take
external, compiled libraries and link them to the Lua interpreter running on theOEM7 receiver.

l TheOperating System Library is not fully-functioning.

l os.time() and os.date() report in GreenwichMean Time (GMT)
l os.date() will report time starting from Jan 1 1970, until GPS coarse time is set, at which point it will
report the current time.

l There is no way to stop a Lua script that was started with LUA START, unless the script itself completes.

OEM7 NovAtel API User Manual v6 31

Chapter 7 Lua Commands
The following commands are used with Lua.

l LUA command on the next page

Chapter 7 Lua Commands

OEM7 NovAtel API User Manual v6 32

7.1 LUA
Configure Lua Interpreter

Platform: OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, PwrPak7, SPAN CPT7,
SMART7

Use this command to configure the execution of the Lua interpreter on the receiver. Scripts that appear within the
LUAFILELIST log (see page 35) can be executed by the Lua interpreter.

Message ID: 2049

Abbreviated ASCII Syntax:
LUA option [LuaInterpreterArguments]

Abbreviated ASCII Example:
lua start "printarguments.lua 1 2 3 4 5"

Field Field Type ASCII
Value

Binary
Value Description Format Binary

Bytes
Binary
Offset

1 Lua header - - Command header. - H 0

2 option

START 1

Start the Lua interpreter in the
background. The file descriptors
stdout, stdin and stderr will not be
accessible outside the receiver.

Enum 4 H

PROMPT 2

Start the Lua interpreter in interactive
mode and connect stdout, stdio and
stderr to the port on which the
commandwas entered. The
INTERFACEMODE of that port will
be changed to LUA for both RX and
TX.

3 LuaInterpreter
Arguments STRING

String containing Lua interpreter
options including the name of the
script file to run and arguments to
pass to the script.

This stringmust be enclosed in
quotes if it contains any spaces.

String arguments within the field
must be enclosed by single quotes.

String
[400] Variable H+4

Chapter 7 Lua Commands

OEM7 NovAtel API User Manual v6 33

The format of the Lua Interpreter Arguments is as follows as adapted from the standard Lua 5.3 interpreter:

[options] [script [args]]
Available options are:
 -e stat execute string 'stat'
 -i enter interactive mode after executing 'script'.

(This is added to the arguments when using the PROMPT option of the
 LUA command)
 -l name require library 'name'

OEM7 NovAtel API User Manual v6 34

Chapter 8 Lua Logs
The following logs are used with Lua.

l LUAFILELIST log on the next page

l LUAFILESYSTEMSTATUS log on page 36

l LUAOUTPUT log on page 37

l LUASTATUS log on page 38

Chapter 8 Lua Logs

OEM7 NovAtel API User Manual v6 35

8.1 LUAFILELIST
List available Lua scripts

Platform: OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, PwrPak7, SPAN CPT7,
SMART7

This sequenced log informs the user of the available scripts, obtained from the ISO loaded onto the receiver. The
size of the file, last change date in yyyymmdd format, last change time in hhmmss format, and path to the files
are printed as well.

Message ID: 2151

Log Type: Polled

Recommended Input:
LOG LUAFILELIST

Abbreviated ASCII Example:
[COM1]<LUAFILELIST COM1 6 89.5 UNKNOWN 0 4.000 02444020 b447 14635
< 0 20180202 151403 "/lua/uppercase.lua"
<LUAFILELIST COM1 5 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 2706 20180129 152042 "/lua/debugloop.lua"
<LUAFILELIST COM1 4 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 4692 20180202 110107 "/lua/parsetime.lua"
<LUAFILELIST COM1 3 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 4764 20180205 105415 "/lua/scom_rx.lua"
<LUAFILELIST COM1 2 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 3728 20180202 104830 "/lua/scomtunnel.lua"
<LUAFILELIST COM1 1 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 3044 20180201 144849 "/lua/scriptargs.lua"
<LUAFILELIST COM1 0 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 2337 20180129 155140 "/lua/sendtocom2.lua"

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 LUAFILELIST
header Log header. - H 0

2 Size File size (in Bytes) Ulong 4 H

3 Date

Last change date

When viewed as a string, the date is of the form
YYYYMMDD. So, numerically, the date is (Year * 10000) +
(Month * 100) + (Day).

Ulong 4 H+4

4 Time

Last change time

When viewed as a string, the time is HHMMSS. So,
numerically, the time is (Hour * 10000) + (Minute * 100) +
(Second).

Ulong 4 H+8

5 Path
The path to the Lua script

Themaximum length of this string is 256 bytes.
String Variable H+12

Chapter 8 Lua Logs

OEM7 NovAtel API User Manual v6 36

8.2 LUAFILESYSTEMSTATUS
Query mount status of Lua scripts

Platform: OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, PwrPak7, SPAN CPT7,
SMART7

Use this log to query themount status of the ISO image that contains the Lua scripts loaded on to the receiver.

Message ID: 2150

Log Type: Asynch

Recommended Input:
LOG LUAFILESYSTEMSTATUS

Abbreviated ASCII Example:
<LUAFILESYSTEMSTATUS COM1 0 90.0 UNKNOWN 0 0.204 02444020 b8f8 14635
< MOUNTED ""

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 LUAFILESYSTEMSTATUS
header Log header. H 0

2 Status The status of the file system. See Table 1:
File System Status below. Enum 4 H

3 Error

String that indicates the error message if
mounting fails

Themaximum length of this string is 52
bytes.

String Variable H+4

Value Description

1 UNMOUNTED

2 MOUNTED

3 BUSY

4 ERROR

5 UNMOUNTING

6 MOUNTING

Table 1: File System
Status

Chapter 8 Lua Logs

OEM7 NovAtel API User Manual v6 37

8.3 LUAOUTPUT
Output stderr and stdout from the Lua interpreter

Platform: OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, PwrPak7, SPAN CPT7,
SMART7

Use this log to output stderr and stdoutmessages from the Lua interpreter.

Message ID: 2240

Log Type: Asynch

Recommended Input:
LOG LUAOUTPUT ONNEW

Abbreviated ASCII Example:
<LUAOUTPUT 0 346044.929
< 1 0 STDOUT "Lua 5.3.4 Copyright (C) 1994-2017 Lua.org, PUC-Rio"
<LUAOUTPUT 0 346044.987
< 2 0 STDOUT "> "

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 LUAOUTPUT
header Log header. - H 0

2 Sequence
Number

Running number of each LUAOUTPUT log produced by the
system Ulong 4 H

3 Executor
Number Lua Executor Number that produced the data Ulong 4 H+4

4 Data Source See Table 2: Lua Data Source below Enum 4 H+8

5 Data

NULL-terminated string containing a single line of data from
stderr or stdout. This string is not terminated with a carriage
return or line feed.

This string contains only printable characters.

Themaximum length of this string is 128 bytes.

String Variable H+12

Binary ASCII Description

0 STDOUT Data is from stdout

1 STDERR Data is from stderr

Table 2: Lua Data Source

Chapter 8 Lua Logs

OEM7 NovAtel API User Manual v6 38

8.4 LUASTATUS
Display status of Lua scripts

Platform: OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, PwrPak7, SPAN CPT7,
SMART7

Use this log to determine which scripts are running on the receiver and whether the scripts have exited or
encountered errors.

Message ID: 2181

Log Type: Collection

Recommended Input:
LOG LUASTATUS

Abbreviated ASCII Example:
[COM1]<LUASTATUS COM1 1 84.5 FINESTEERING 1963 402110.866 02400000 2e18 32768
< 0 "icom_rx.lua 127.0.0.1 3001" EXECUTING
<LUASTATUS COM1 0 84.5 FINESTEERING 1963 402110.866 02400000 2e18 32768
< 1 "" NOT_STARTED

The example above is for the projected log output for two executors.

Field Field Type Description Format Binary
Bytes

Binary
Format

1 LUASTATUS
header Log header. H 0

2 Number Executor number Ulong 4 H

3 Script Script and arguments String
[256] Variable H+4

4 Status Script status. See Table 3: Script Status
below. Enum 4 Variable

Binary ASCII Description

0 NOT_STARTED There is no script running on the executor

1 EXECUTING The script is running

2 COMPLETED The script completed successfully

3 SCRIPT_ERROR The script exited with an error

4 EXECUTOR_ERROR The script executor encountered an error while attempting to run the script

Table 3: Script Status

OEM7 NovAtel API User Manual v6 39

Chapter 9 Using Lua to Access I/O Devices Connected to the
Receiver

A common request from users of OEM7 receivers is have the receiver interact with other equipment in the
embedded system. For example, manipulating GPIOs to control external devices or monitor other sensors. To
meet this need, certain OEM7 receivers have I2C bus signals available which allows connections to a variety of
devices.

“The I2C bus was designed by Philips in the early ’80s to allow easy communication between components which
reside on the same circuit board. Philips Semiconductors migrated to NXP in 2006”. (i2c-bus.org)

Starting with the 7.05.00 release, all OEM7 receivers that provide access to the I2C signals support two com-
mands and one log to interact with I2C devices connected to the receiver:

l USERI2CREAD command (see page 40)

l USERI2CWRITE command (see page 42)

l USERI2CRESPONSE command (see page 44)

In theSampleScripts folder of the NovAtel API you will find two examples of I2C “drivers” for GPIO expanders.
One example is for theMCP23008 8 I/O port expander (mcp23008ioe.lua) and the other example is for the
PCA9554 8-bit I/O expander (PCA9554ioe.lua). These examples can be used as the basis for creating drivers to
interact with other I2C devices.

https://www.i2c-bus.org/

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v6 40

9.1 USERI2CREAD
Read data from devices on the I2C bus

Platform: OEM7600, OEM7700, OEM7720

Use this command to read data from devices on the I2C bus.

This command only applies to OEM7 receivers that have I2C signals available on the interface con-
nector. The compatible receivers are listed in thePlatform section above.

TheUSERI2CRESPONSE log (see page 44) can be used to check the completion or status of the read oper-
ation. An optional user defined Transaction ID can be provided to help synchronize requests with responses in
theUSERI2CRESPONSE log (see page 44). This command is primarily intended to be used by Lua applications
that need to interact with external devices.

Reading from an I2C device requires a device address, to distinguish which physical device is to be accessed, a
register within the device, and the expected number of bytes to be read. Depending on the type of I2C device,
register addresses can be 1 to 4 bytes in length, so the actual number of bytes for the register address must be
specified.

For some I2C devices there are no registers within the device. In this case, the Register Address Length is 0 and
no bytes are supplied for the Register Address.

TheUSERI2CREAD command is flexible to handle all of these situations.

Message ID: 2232

Abbreviated ASCII Syntax:
USERI2CREAD DeviceAddress RegisterAddressLen RegisterAddress RequestReadLen
[TransactionID]

Examples:
USERI2CREAD 70 1 AB 12 1234

USERI2CREAD 74 3 ABCDEF 234 5678

USERI2CREAD 74 0 234 5678

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 USERI2CREAD
header

Command header. SeeMessages for more
information. - H 0

2 DeviceAddress

The 7 bit address of the I2C device. Valid values are 0
through 127.

For ASCII and Abbreviated commands, this field is a
hexadecimal string of two digits. There is no 0x prefix
and spaces are not allowed in the string.

Uchar 11 H

1In the binary case, additional bytes of padding are added after this field to maintain 4-byte alignment for the fields that
follow.

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v6 41

Field Field Type Description Format Binary
Bytes

Binary
Offset

3 RegisterAddressLen The length of the register address that follows. Valid
values are 0 through 4. Ulong 4 H+4

4 RegisterAddress

The actual address of the register to be read. The
number of bytes heremust match the
RegisterAddressLen. In particular, when
RegisterAddressLen is 0, this field is empty (even for
a binary command)

For ASCII and Abbreviated commands, this field is a
hexadecimal string of two digits for each byte in the
register address. There is no 0x prefix and spaces are
not allowed in the string.

Uchar
Array

X1 H+8

5 RequestReadLen The length of data expected to be retrieved from the
device. Valid values are 1 through 256. Ulong 4 H+121

6 TransactionID

An optional user provided ID for this transaction.
Default = 0.

This transaction ID will be copied to the
USERI2CRESPONSE log (see page 44) created for
this read operation.

Ulong 4 H+162

1H+8 if X=0
2H+12 if X=0

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v6 42

9.2 USERI2CWRITE
Write data to device on I2C bus

Platform: OEM7600, OEM7700, OEM7720

Use this command to write data to devices on the I2C bus.

This command only applies to OEM7 receivers that have I2C signals available on the interface con-
nector. The compatible receivers are listed in thePlatform section above.

TheUSERI2CRESPONSE log (see page 44) can be used to check the completion or status of the write oper-
ation. An optional user defined Transaction ID can be provided to help synchronize requests with responses in
theUSERI2CRESPONSE log (see page 44). This command is primarily intended to be used by Lua applications
that need to interact with external devices.

Writing to an I2C device requires a device address, to distinguish which physical device is to be accessed, a
register within the device and the data. Depending on the type of I2C device, register addresses can be 1 to 4
bytes in length, and so the actual number of bytes for the register address must be specified.

For some I2C devices there are no registers within the device. In this case, the Register Address Length is 0,
and no bytes are supplied for the Register Address.

For some other I2C devices, write operations are done in two stages:

1. The first stage sends a write commandwith a register address, but no data. This is a dummy write to set the
register within the device for write operations that follow.

2. The second stage sends a write commandwith no register address, but does send a stream of data.

TheUSERI2CWRITE command is flexible to handle all of these situations.

Message ID: 2233

Abbreviated ASCII Syntax:
USERI2CWRITE DeviceAddress RegisterAddressLen RegisterAddress
WriteDataLength WriteData [TransactionID]

Examples:
USERI2CWRITE 70 1 AB 12 3132333435363738393A3B3C 1234

USERI2CWRITE 74 3 ABCDED 5 1234567890 1234

USERI2CWRITE 40 0 5 1234567890 1234

USERI2CWRITE 40 2 AABB 0 1234 (a dummy write)

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 USERI2CWRITE
header

Command header. SeeMessages for more
information. - H 0

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v6 43

Field Field Type Description Format Binary
Bytes

Binary
Offset

2 DeviceAddress

The 7 bit address of the I2C device. Valid
values 0 through 127.

For ASCII and Abbreviated commands, this
field is a hexadecimal string of two digits. There
is no 0x prefix and spaces are not allowed in the
string.

Uchar 11 H

3 RegisterAddressLen The length of the register address that follows.
Valid values are 0 through 4. Ulong 4 H+4

4 RegisterAddress

The actual address of the register to be written.
The number of bytes heremust match the
RegisterAddressLen. In particular, when
RegisterAddressLen is 0, this field is empty
(even for a binary command)

For ASCII and Abbreviated commands, this
field is a hexadecimal string of two digits for
each byte in the register address. There is no 0x
prefix and spaces are not allowed in the string.

Uchar
Array

X1 H+8

5 WriteDataLength The length of data to be written in bytes. Valid
values are 0 through 256. Ulong 4 H+122

6 WriteData

The data to be written. The number of bytes in
this data block must match the
WriteDataLength. In particular, when
WriteDataLength is 0, this field is empty.

For ASCII and Abbreviated commands, this
field is a hexadecimal string of two digits for
each byte in the data block. There is no 0x
prefix and spaces are not allowed in the string.

Data is streamed to the device as a series of
bytes in the order provided.

Uchar
Array Y3 H+164

7 TransactionID

An optional user provided ID for this
transaction. Default = 0.

This transaction ID will be copied to the
USERI2CRESPONSE log (see page 44)
created for this write operation.

Ulong 4 H+16+4*INT
((Y+3)/4)5

1In the binary case, additional bytes of padding are added after this field to maintain 4-byte alignment for the fields that
follow.
2H+8 if X=0
3In the binary case, additional bytes of padding are added after this field to maintain 4-byte alignment for the fields that
follow.
4H+12 if X=0
5H+12+4*INT((Y+3)/4) if X=0

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v6 44

9.3 USERI2CRESPONSE
Status of USERI2CREAD or USERI2CWRITE Command

Platform: OEM7600, OEM7700, OEM7720

This log reports the status of a previously executedUSERI2CREAD orUSERI2CWRITE command. There is
one log emitted for each command that is executed.

For theUSERI2CREAD command (see page 40), this log outputs the data read from the device on the I2C bus
and the status of the read operation.

For theUSERI2CWRITE command (see page 42), the status of the write operation is reported and the data field
will always be 0.

Message ID: 2234

Recommended Input:
log USERI2CRESPONSE onnew

Abbreviated ASCII Example 1:
USERI2CREAD 70 4 aabbccdd 12 6789

<USERI2CRESPONSE COM1 0 84.0 FINESTEERING 1994 257885.895 02000000 e3f6 32768
< 70 aabbccdd OK READ 6789 12 000102030405060708090a0b

Abbreviated ASCII Example 2:
USERI2CWRITE 70 3 aabbcc 8 0001020304050607 12345

<USERI2CRESPONSE COM1 0 84.0 FINESTEERING 1994 257885.895 02000000 e3f6 32768
< 70 aabbcc OK WRITE 12345 0

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 USERI2CRESPONSE
header

Log header. SeeMessages for more
information. - H 0

2 DeviceAddress

The 7 bit address of the I2C device. Valid
values are 0 through 127.

For ASCII and Abbreviated commands, this
field is a hexadecimal string of two digits. There
is no 0x prefix and spaces are not allowed in the
string.

Uchar 11 H

3 RegisterAddress
The actual register address used for the
operation. This is a ULONG value in
hexadecimal format (without 0x prefix).

Ulong 4 H+4

1In the binary case, additional bytes of padding are added after this field to maintain 4-byte alignment for the fields that
follow.

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v6 45

Field Field Type Description Format Binary
Bytes

Binary
Offset

4 ErrorCode Error code for the operation. See Table 4: Error
Code below. Enum 4 H+8

5 OperationMode Operationmode code. See Table 5: Operation
Mode Code below. Enum 4 H+12

6 TransactionID This is the copy of Transaction ID provided to
the command. Ulong 4 H+16

7 ReadDataLength
For a Read operation, this is the actual number
of bytes read from the I2C device.

For aWrite operation, this value is always zero.
Ulong 4 H+20

8 ReadData

For a Read operation, this is the data read from
the device. For ASCII logs this field is
displayed as a string of hexadecimal digits,
with two digits per byte. The first byte retrieved
from the I2C device is the first byte displayed
and so on.

Themaximum size of this field is 256 bytes.

When ReadDataLength is zero, this field will be
empty.

HEXBYTE
ARRAY Y H+24

Binary ASCII Description

0 OK I2C transaction is successful

1 IN_PROGRESS I2C transaction is currently in progress

2 DATA_TRUNCATION I2C transaction read data was truncated

3 BUS_BUSY I2C bus is busy

4 NO_DEVICE_REPLY No device replied to the I2C transaction request

5 BUS_ERROR I2C bus error or bus arbitration lost

6 TIMEOUT I2C transaction has timed out

7 UNKNOWN_FAILURE I2C transaction has an unexplained failure

Table 4: Error Code

Binary ASCII Description

0 NONE NoOperation

1 READ ReadOperation

Table 5: Operation Mode Code

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v6 46

Binary ASCII Description

2 WRITE Write Operation

3 SHUTDOWN Shut downOperation

OEM7 NovAtel API User Manual v6 47

	Customer Support
	Chapter 1 Overview
	1.1 Features
	1.2 Materials Provided – NovAtel API
	1.3 Requirements to Use NovAtel API
	1.4 Compatibility with Applications Built for OEM6 Receivers

	Chapter 2 Concepts
	2.1 Required Firmware Model
	2.2 Getting Started with Lua
	2.3 Using SCOM Ports
	2.4 Sending Data Out a Receiver Port Using SEND or SENDHEX
	2.5 Using a Tunnel to Take Over a Port

	Chapter 3 Learning Lua
	3.1 Online Documentation
	3.2 Creating A Custom NovAtel Style Log
	3.3 Modules

	Chapter 4 Loading and Running the Application
	4.1 Packaging the Application
	4.2 Loading the Application
	4.3 Running the Application
	4.3.1 Lua Start
	4.3.2 Lua Prompt
	4.3.3 Single Line Lua Program
	4.3.4 Passing Arguments into Lua
	4.3.5 Starting a Script Automatically

	Chapter 5 Debugging and Testing
	5.1 ZeroBrane Studio
	5.2 On Target vs. Off Target Debugging
	5.3 On Target Debugging
	5.3.1 Prerequisites
	5.3.2 PC and Receiver Setup

	Chapter 6 Additions and Limitations
	6.1 Additions
	6.2 Limitations

	Chapter 7 Lua Commands
	7.1 LUA

	Chapter 8 Lua Logs
	8.1 LUAFILELIST
	8.2 LUAFILESYSTEMSTATUS
	8.3 LUAOUTPUT
	8.4 LUASTATUS

	Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver
	9.1 USERI2CREAD
	9.2 USERI2CWRITE
	9.3 USERI2CRESPONSE

