
OM-20000176 v5 October 2019

OEM7®
NovAtel API
User Manual

OEM7 NovAtel API User Manual v5 2

OEM7 NovAtel API User Manual
Publication Number: OM-20000176

Revision Level: v5

Revision Date: October 2019

Firmware Versions:

l 7.07.03 / OM7MR0703RN0000

l PP7 07.07.03 / EP7PR0703RN0000

Proprietary Notice
The software described in this document is furnished under a license agreement or non-dis-
closure agreement. The software may be used or copied only in accordance with the terms of
the agreement. It is against the law to copy the software on any medium except as specifically
allowed in the license or non-disclosure agreement.

Information in this document is subject to change without notice and does not represent a com-
mitment on the part of NovAtel Inc. The information contained within this manual is believed to
be true and correct at the time of publication.

NovAtel, ALIGN, GLIDE, GrafNav/GrafNet, Inertial Explorer, NovAtel CORRECT, OEM7, PwrPak7,
RELAY, SPAN, STEADYLINE, VEXXIS and Waypoint are registered trademarks of NovAtel Inc.

NovAtel Connect, OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, SMART7,
SMART2, RELAY7 and RTK ASSIST are trademarks of NovAtel Inc.

All other brand names are trademarks of their respective holders.

Lua.org license page: www.lua.org/license.html

© Copyright 2019 NovAtel Inc. All rights reserved. Unpublished rights reserved under Inter-
national copyright laws.

© Copyright 1994-2017 Lua.org, PUC-Rio Lua 5.3.4

Unpublished rights reserved under International copyright laws.

https://www.lua.org/license.html

OEM7 NovAtel API User Manual v5 3

Table of Contents

Customer Support

Chapter 1 Overview
1.1 Features 6
1.2 Materials Provided – NovAtel API 6
1.3 Requirements to Use NovAtel API 6
1.4 Compatibility with Applications Built for OEM6 Receivers 7

Chapter 2 Concepts
2.1 Required Firmware Model 8
2.2 Getting Started with Lua 9
2.3 Using SCOM Ports 9
2.4 Sending Data Out a Receiver Port Using SEND or SENDHEX 10
2.5 Using a Tunnel to Take Over a Port 11

Chapter 3 Learning Lua
3.1 Online Documentation 13
3.2 Creating A Custom NovAtel Style Log 13
3.3 Modules 16

Chapter 4 Loading and Running the Application
4.1 Packaging the Application 18
4.2 Loading the Application 19
4.3 Running the Application 20

4.3.1 Lua Start 20
4.3.2 Lua Prompt 21
4.3.3 Single Line Lua Program 22
4.3.4 Passing Arguments into Lua 22
4.3.5 Starting a Script Automatically 23

Chapter 5 Debugging and Testing
5.1 ZeroBrane Studio 25
5.2 On Target vs. Off Target Debugging 25
5.3 On Target Debugging 26

5.3.1 Prerequisites 26
5.3.2 PC and Receiver Setup 26

Chapter 6 Additions and Limitations
6.1 Additions 30
6.2 Limitations 30

OEM7 NovAtel API User Manual v5 4

Chapter 7 Lua Commands
7.1 LUA 32

Chapter 8 Lua Logs
8.1 LUAFILELIST 35
8.2 LUAFILESYSTEMSTATUS 37
8.3 LUAOUTPUT 38
8.4 LUASTATUS 39

Chapter 9 Using Lua to Access I/O Devices Connected to the
Receiver

9.1 USERI2CREAD 41
9.2 USERI2CWRITE 43
9.3 USERI2CRESPONSE 46

OEM7 NovAtel API User Manual v5 5

Customer Support

If you have any questions or comments regarding your OEM7 product, contact NovAtel Customer
Service.

Log a support request with NovAtel Customer Support using one of the following methods:

Log a Case and Search Knowledge:

Website: www.novatel.com/support

Log a Case, Search Knowledge and View Your Case History: (login access required)

Web Portal: https://novatelsupport.force.com/community/login

E-mail:

support@novatel.com

Telephone:

U.S. and Canada: 1-800-NOVATEL (1-800-668-2835)

International: +1-403-295-4900

Lua Language
Contact Lua by visiting their web site: www.lua.org/contact.html

Additional NovAtel Documentation
To view the complete OEM7 suite of user documentation, go to the NovAtel OEM7 Receiver Docu-
mentation Portal at: docs.novatel.com/oem7

http://www.novatel.com/support
https://novatelsupport.force.com/community/login
mailto:support@novatel.com
https://www.lua.org/contact.html
https://docs.novatel.com/oem7

OEM7 NovAtel API User Manual v5 6

Chapter 1 Overview
NovAtel API is used to develop specialized applications using the Lua programming language to
further extend the functionality of the OEM7 family receiver. Lua scripts created by customers
run alongside the core receiver firmware using an embedded Lua script interpreter. The scripts
can interact with the core firmware by sending commands to the receiver and retrieving logs for
processing.

1.1 Features
NovAtel API provides the following features:

l Powerful scripting capability using Lua, a popular scripting language for embedded applic-
ations

l Dedicated sockets allowing Lua scripts to directly send commands to and receive logs from
the receiver firmware

l Special Tunneling Ports provide access to physical ports on the receiver

Lua scripts can be used to:

l Create customized logs to be sent out a communication port

l Intercept the command stream for creating and interpreting custom commands

1.2 Materials Provided – NovAtel API
NovAtel API supports:

l The utility programs TOSREC, DATABLK and MKISOFS, which are utilities used to create an
ISO9660 file system image and format that image for use with a NovAtel receiver

l Examples

l Release Notes. The Release Notes should be read carefully to understand changes made
since the last release.

l ZeroBrane Lua Integrated Development Environment (IDE)

1.3 Requirements to Use NovAtel API
In addition to the items provided with NovAtel API, the following items are required to create
and run a Lua application on an OEM7 family receiver:

l A PC is required to write the application files and run the utilities that package the Lua scripts
for use on the receiver

l The PC requires a connection to the receiver (serial port, USB, Ethernet, etc.) to load the
application onto the receiver

l OEM7 family receiver running OM7MR0500RN0000 (7.05.00) firmware or higher, or a
PwrPak7 receiver running PP7 07.07.03 / EP7PR0703RN0000 firmware or higher, loaded with
a user application enabled software model

l In addition to this manual, the NovAtel OEM7 Receiver User Documentation Portal (doc-
s.novatel.com/oem7) is an online reference for other OEM7 receiver information. PDF ver-
sions of manuals are available for download from this location as well.

https://docs.novatel.com/oem7
https://docs.novatel.com/oem7

Chapter 1 Overview

OEM7 NovAtel API User Manual v5 7

The Lua interpreter is present on the receiver, so no compiler or specialized development tools
are needed to create an application. However, a Lua development environment called Zer-
oBrane is provided within NovAtel API.

The OEM7 receiver contains version 5.3.4 of the Lua interpreter. Be sure that any offline
development is done using this version of the Lua interpreter.

1.4 Compatibility with Applications Built for OEM6 Receivers
Existing applications, created for the OEM6 family of receivers, are not compatible with the
OEM7 family receivers and will need to be redesigned and written as a Lua script. Some func-
tionality that was available in the OEM6 Application Programming Interface will not be available
for Lua scripts. Consult the release notes for functional compatibility with the OEM6 Application
Programming Interface.

OEM7 NovAtel API User Manual v5 8

Chapter 2 Concepts
“Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural
programming, object-oriented programming, functional programming, data-driven pro-
gramming, and data description.” (quoted from www.lua.org/about.html)

A Lua interpreter has been embedded into the OEM7 firmware and can be used to add additional
functionality to the OEM7 receiver. Using Lua's native socket module, a script can connect to a
virtual NovAtel port (SCOM) to communicate with the receiver using the standard NovAtel com-
mands and logs.

2.1 Required Firmware Model
To use the Lua interpreter, a model supporting user applications is required. This is indicated by
a trailing "A" in the model name and can be confirmed using the MODELFEATURES log, which
must show that the user application (API) is AUTHORIZED.

Here is an example of a model with a trailing "A" that supports the user application:
log version
<OK
[COM2]<VERSION COM2 0 92.5 UNKNOWN 0 2352.778 02444020 3681 14581
< 3
< GPSCARD "DDNRNNCBNA" "BMHR16370009M" "OEM7700-1.00"
"OM7MR0400AN0001" "OM7BR0000RB0000" "2018/Jan/09" "07:58:45"
< OEM7FPGA "" "" "" "OMV070001RN0000" "" "" ""
< DB_LUA_SCRIPTS "SCRIPTS" "Block1" "" "SAMPLE1" "" "2018/Jan/22"
"14:19:44"
[COM2]

log modelfeatures
<OK
[COM2]<MODELFEATURES COM2 0 90.5 UNKNOWN 0 2358.402 02444020 141a 14581
< 20
< 100HZ MAX_MSR_RATE
< 100HZ MAX_POS_RATE
< SINGLE ANTENNA
< AUTHORIZED MEAS_OUTPUT
< AUTHORIZED DGPS_TX
< AUTHORIZED RTK_TX
< AUTHORIZED RTK_FLOAT
< AUTHORIZED RTK_FIXED
< AUTHORIZED PPP
< AUTHORIZED LOW_END_POSITIONING
< AUTHORIZED RAIM
< AUTHORIZED API
< AUTHORIZED NTRIP
< UNAUTHORIZED IMU
< UNAUTHORIZED INS
< UNAUTHORIZED ALIGN_HEADING
< UNAUTHORIZED ALIGN_RELATIVE_POS
< UNAUTHORIZED INTERFERENCE_MITIGATION
< UNAUTHORIZED RTKASSIST
< UNAUTHORIZED SCINTILLATION

http://www.lua.org/about.html

Chapter 2 Concepts

OEM7 NovAtel API User Manual v5 9

[COM2]

2.2 Getting Started with Lua
To quickly start the Lua interpreter, connect to any port of the OEM7 receiver and send the com-
mand LUA PROMPT. This will do two things:

1. Change the Interface Mode of the port that received the command to LUA. In the example
below, that's COM1.

2. Start the Lua interpreter

Interface mode LUA establishes a connection between the COM port and the Lua inter-
preter's stdin, stdout and stderr. This connection allows commands to be typed directly
to the Lua interpreter (stdin) and the output from print statements is sent to the COM
port. For more information, see Loading and Running the Application on page 18.

From there, Lua commands can be entered as shown below.
lua prompt
<OK
[COM1]Lua 5.3.4 Copyright (C) 1994-2017 Lua.org, PUC-Rio
>
>
> print("Hello World")
Hello World
>
> Var1 = 1
> Var2 = 2
> print(Var1+Var2)
3
>

NovAtel Connect's Console Window cannot be used for this purpose because it depends
on the port remaining in the NOVATEL Interface Mode. The terminal emulators TeraTerm
or Hyperterm can be used:
https://ttssh2.osdn.jp/index.html.en
https://hyperterminal-private-edition-htpe.en.softonic.com/download

For details on the Lua language, reference manuals can be found at www.lua.org. The OEM7
receiver uses Lua version 5.3.4.

2.3 Using SCOM Ports
Lua interacts with the rest of the OEM7 receiver using SCOM ports. SCOM ports are similar to
ICOM ports, except they have fixed socket port numbers and use only UDP.

The Lua socket library is compiled into the OEM7 receiver and is used to communicate with the
SCOM ports. Details on the Lua socket library can be found here: https://-
github.com/diegonehab/luasocket

These are the steps to setup an SCOM connection in Lua.

https://ttssh2.osdn.jp/index.html.en
https://hyperterminal-private-edition-htpe.en.softonic.com/download
http://www.lua.org/
https://github.com/diegonehab/luasocket
https://github.com/diegonehab/luasocket

Chapter 2 Concepts

OEM7 NovAtel API User Manual v5 10

1. Use the Lua require function to initialize the socket library.
SocketLib = require("socket")

2. Use the socket library to get an instance of a UDP object.
SocketSCOM1 = SocketLib.udp()

UDP communication is used to improve performance. Although the UDP protocol
is normally considered "unreliable" over Ethernet, it is very reliable and effi-
cient for connections on a local host.

3. Setup the socket.

l Since the Lua interpreter is running on the OEM7 receiver, use the localhost (127.0.0.1)
IP address.

l Use the NovAtel-added scom module to convert from the SCOM number to the socket
port number.

l Wrap the calls with the assert function to check for errors.

assert(SocketSCOM1:setsockname("*",0))

assert(SocketSCOM1:setpeername("127.0.0.1",scom.GetSCOMPort(1)))

assert(SocketSCOM1:settimeout(3))

4. The socket is now ready to send and receive data. Use the :send() method to issue a com-
mand to the receiver through the SCOM socket. Use the :receive() method to retrieve the
receiver's response to the command and also to receive the requested logs or other data
from the receiver.

This example shows how to use the socket object created above to collect a VERSIONA log:
SocketSCOM1:send("log versiona\r")

while(true) do
 Buffer = SocketSCOM1:receive()
 if Buffer == nil then
 print("... timed out")
 break
 end
 print("> ", Buffer)
end

2.4 Sending Data Out a Receiver Port Using SEND or SENDHEX
The Lua interpreter uses the standard NovAtel commands and logs and therefore does not have
special access to the ports on the receiver. However, the SEND command and SENDHEX com-
mand can be used to output data on any desired receiver port. This is the method to use when
other NovAtel logs are coming out of the port. Data sent using the SEND or SENDHEX commands
will not corrupt the other logs on the port.

Here is a simple example of how to do this:
SocketLib = require("socket")
SocketSCOM1 = SocketLib.udp()

assert(SocketSCOM1:setsockname("*",0))

Chapter 2 Concepts

OEM7 NovAtel API User Manual v5 11

assert(SocketSCOM1:setpeername("127.0.0.1",scom.GetSCOMPort(1)))
assert(SocketSCOM1:settimeout(3))
SocketSCOM1:send("send com2 \"Hello World\n\"\r")
SocketSCOM1:send("sendhex com2 12 48656C6C6F20576F726C640A\r")

In this example, the script opens up SCOM1 and then uses the SEND command to send "Hello
World\n" as a string and then uses the SENDHEX command to send the equivalent hex data.
When the script is run, two instances of "Hello World\n" are output on COM2:
[COM2]Hello World

Hello World

Note the use of backslashes to escape special characters to form a string within a string.

2.5 Using a Tunnel to Take Over a Port
An alternative to the SEND / SENDHEX commands is to establish a tunnel between an SCOM port
and an external port. In this configuration, all data sent into the SCOM will be output on the
external port and all data on the external port will be sent out the SCOM.

Below is a simple example, which sets up an echo on COM2. For a more extensive example of
taking over a port, see the intercept.lua script within the sample scripts folder of the devel-
opment kit.
SocketLib = require("socket")

-- Use SCOM1 for commands and logs
local SocketSCOM1 = SocketLib.udp()
-- Use SCOM2 for the tunnel
local SocketSCOM2 = SocketLib.udp()

-- Setup the sockets
TargetIP = "127.0.0.1"

assert(SocketSCOM1:setsockname("*",0))
assert(SocketSCOM1:setpeername(TargetIP,scom.GetSCOMPort(1)))
assert(SocketSCOM1:settimeout(3))

assert(SocketSCOM2:setsockname("*",0))
assert(SocketSCOM2:setpeername(TargetIP,scom.GetSCOMPort(2)))
-- No time out on SCOM2

-- Create function to send a command and wait for a prompt
-- Returns the prompt on success, nil on failure
function WaitForPrompt(SocketSCOM_)
 while true do
 local Buffer = SocketSCOM_:receive()
 if Buffer == nil then
 print("Timed out")
 return nil
 end

 local Start,Stop,Prompt = Buffer:find("(%[SCOM%d%])")

 if Prompt ~= nil then
 print("Prompt Received: ",Prompt)
 return Prompt

Chapter 2 Concepts

OEM7 NovAtel API User Manual v5 12

 end
 end

 return nil
end

-- Send a one-byte packet to SCOM2 so that it knows the IP address of the
machine
-- running the Lua script
SocketSCOM2:send("\r")

-- Setup the tunnel on the SCOM2 side
SocketSCOM1:send("interfacemode scom2 tcom2 none\r")
assert(WaitForPrompt(SocketSCOM1))

-- Setup the tunnel on the COM2 side
SocketSCOM1:send("interfacemode com2 tscom2 none\r")
assert(WaitForPrompt(SocketSCOM1))
SocketLib.sleep(1)

-- Setup an echo loop
-- This will have the effect that if the user enters characters
-- on COM2, they will be echoed back
while true do
 -- Receive characters from SCOM2
 local Buffer = SocketSCOM2:receive(1)
 print ("Buffer: ",Buffer)
 -- Echo those characters back to SCOM2
 SocketSCOM2:send(Buffer)
end

SCOM and Connectionless UDP

The UDP communication used on the SCOM ports is connectionless, which means
that the SCOM side does not know the IP address of the Lua interpreter until the
Lua interpreter has sent a byte to the SCOM. Therefore, no data will be received on
an SCOM until a byte has been sent to it.

That's why in the example above, a one-byte packet is sent to SCOM2 before
attempting to receive on the socket.

OEM7 NovAtel API User Manual v5 13

Chapter 3 Learning Lua

3.1 Online Documentation
An introduction to programing in Lua is available on lua.org here:
www.lua.org/pil/contents.html. This free online version is based on Lua version 5.0, but it
remains a good starting point for developers new to the language.

Newer versions of the programming guide are available for purchase.

3.2 Creating A Custom NovAtel Style Log
The Lua string library can be used to parse NovAtel ASCII logs and create new custom logs. The
example below shows how to do that. Note the following:

l The string.find function is used to split the TIMEA log into its header and data.

l The string.gmatch function is then used to split up the individual comma-separated data
fields. The data fields are then stored into table, which can be used as required.

l The string.format function is used to format a new log.

A tutorial on the Lua String Library can be found here: www.lua.org/pil/20.html.

The full script, as well as the required crc32.lua module is available in the Lua Dev Kit.
--
**
-- Parse a string, looking for a TIMEA log
-- Inputs:
-- Buffer_ String containing input data

-- Returns:
-- nil if no TIMEA log is found
-- A table representing the data of a TIMEA log if a log is found
--
**
function ParseTIMEA(Buffer_)

 -- Search for a TIMEA log.
 -- string.find returns the start and stop index as well as any strings that
are "captured" within the parentheses
 local FindTIMEAStart
 local FindTIMEAStop
 local TIMEAHeader
local TIMEAData

 FindTIMEAStart,FindTIMEAStop, TIMEAHeader,TIMEAData
 = Buffer_:find("#(TIMEA[^;]*;)([^%*]*%*).-\n")

 if FindTIMEAStart ~= nil then
 -- Found a TIMEA log

 -- split the header into its elements
 local HeaderIter = TIMEAHeader:gmatch("([^,]-)[,%;]")
 HeaderData = {}
 HeaderData['Message'] = HeaderIter()

https://www.lua.org/pil/contents.html
https://www.lua.org/pil/20.html

Chapter 3 Learning Lua

OEM7 NovAtel API User Manual v5 14

 HeaderData['Port'] = HeaderIter()
 HeaderData['Sequence'] = HeaderIter()
 HeaderData['IdleTime'] = HeaderIter()
 HeaderData['TimeStatus'] = HeaderIter()
 HeaderData['Week'] = HeaderIter()
 HeaderData['Second'] = HeaderIter()
 HeaderData['ReceiverStatus'] = HeaderIter()
 HeaderData['Reserved'] = HeaderIter()
 HeaderData['ReceiverSWVersion'] = HeaderIter()

 -- Split the data into its elements
 -- gmatch returns an iterator function that can be called successively to
get
 -- the next string matching the pattern.
 local DataIter = TIMEAData:gmatch("([^,]-)[,%*]")

 -- Create a table for the Time Data and assign the data fields into that
table
 TimeData = {}
 TimeData['Header'] = HeaderData
 TimeData['ClockStatus'] = DataIter()
 TimeData['Offset'] = DataIter()
 TimeData['OffsetStd'] = DataIter()
 TimeData['UTCOffset'] = DataIter()
 TimeData['UTCYear'] = DataIter()
 TimeData['UTCMonth'] = DataIter()
 TimeData['UTCDay'] = DataIter()
 TimeData['UTCHour'] = DataIter()
 TimeData['UTCMinute'] = DataIter()
 TimeData['UTCMillisecond'] = DataIter()
 TimeData['UTCStatus'] = DataIter()

 return TimeData
 end
 -- NOTE: There is an implicit return of nil for Lua functions
 -- that do not otherwise return a value
end

--
**
-- Create a custom NovAtel-like log based on data from a TIMEA log that
contains
-- the UTC Month
 -- Inputs:
 -- TimeData_ String containing input data

 -- Returns:
 -- Custom Log String
--
**
local function CreateMonthLog(TimeData_,OutputPort_)
 local HeaderData = TimeData_['Header']

 local MonthTable = {

Chapter 3 Learning Lua

OEM7 NovAtel API User Manual v5 15

'January','February','March','April','May','June','July','August','September','
October','November','December' }
 -- Setup the Header and Data.
 -- Leave out the leading # and trailing * as they are not included in the CRC
 local CustomLog =
 string.format("MONTHA,%s,%s,%s,%s,%s,%s,%s,%s,%s;%s",
 OutputPort_, -- Note that the port is updated to the port
where this log will be sent
 HeaderData['Sequence'],
 HeaderData['IdleTime'],
 HeaderData['TimeStatus'],
 HeaderData['Week'],
 HeaderData['Second'],
 HeaderData['ReceiverStatus'],
 HeaderData['Reserved'],
 HeaderData['ReceiverSWVersion'],
 MonthTable[tonumber(TimeData['UTCMonth'])])

 -- the crc32.lua script is included with the NovAtel Lua Dev Kit
 local CRC = require("crc32").CalculateBlock(CustomLog,0)

 -- Format together the leading #, the log data, the trailing * and calculated
CRC.
 return string.format("#%s*%08x",CustomLog,CRC)
end
--
**
-- Request TIMEA logs on SCOM1, parse them and produce a new NovAtel-like
custom log
-- Inputs:
-- arg[1] String representing the output port (e.g. 'COM1')
--
**
local function main()

 local OutputPort = arg[1]

 if OutputPort == nil then
 print("No Output Port Specified")
 return
 end

 local SocketLib = require("socket")
 local SocketSCOM1 = SocketLib.udp()
 -- Setup the sockets
 local TargetIP = "127.0.0.1"

 assert(SocketSCOM1:setsockname("*",0))
 assert(SocketSCOM1:setpeername(TargetIP,require("scom").GetSCOMPort(1)))
 assert(SocketSCOM1:settimeout(3))

 -- Request the TIMEA log on SCOM1
 SocketSCOM1:send("LOG TIMEA ONTIME 1\r")
while true do
 -- Wait for TIMEA Logs

Chapter 3 Learning Lua

OEM7 NovAtel API User Manual v5 16

 local Buffer = SocketSCOM1:receive()
 if Buffer == nil then
 print("... timed out")
 break
 end

 local TimeData = ParseTIMEA(Buffer)

 if TimeData ~= nil then
 -- Uncomment the lines below to dump out the parsed TIMEA data
-- for Key,Value in pairs(TimeData) do
-- if type(Value) == "table" then
-- print(string.format("%s:",Key))
-- for SubKey,SubValue in pairs(Value) do
-- print(string.format(" %s: \"%s\"",SubKey,SubValue))
-- end
-- else
-- print(string.format("%s: \"%s\"",Key,Value))
-- end
-- end
-- print("------------------------\n")

 -- Format the new log
 local MonthLog = CreateMonthLog(TimeData,OutputPort)

 -- Send the log out the port
 -- Note in firmware version OM7MR0500RN0000 the SEND command can only
 -- send 100 bytes at once. That is sufficient for this example, but
 -- in an actual use case the log should be sent out in 100 byte chunks.
 SocketSCOM1:send(string.format('send %s \"%s\"\r',OutputPort,MonthLog))
 end
 end
end
--
**
main()

3.3 Modules
Lua code can be located in multiple files and loaded as modules using the require function. Mod-
ules allow the user to group functionally related code in one file, and have other files import and
use this functionality.

A module is loaded by passing in the name of the file without the .lua extension to the require
function. A description of the require function can be found here: www.lua.org/pil/8.1.html.

The following example shows code from two files, mymodule.lua and use_mymodule.lua. These
two script files can be packaged together and loaded onto the receiver using the steps in Loading
and Running the Application on page 18.
-- File mymodule.lua
-- This is an example of creating a module called mymodule, which provides a
single function, mymodule.example_func()
-- which can be used by other scripts that import this module.

-- Create an empty table, which acts as the container for the module.

https://www.lua.org/pil/8.1.html

Chapter 3 Learning Lua

OEM7 NovAtel API User Manual v5 17

local mymodule = {}

-- Create a function that is available for the module.
function mymodule.example_func()
 print("Hello from mymodule.example_func()")
end

return mymodule

-- File use_mymodule.lua
-- Import the functionality from the file mymodule.lua.
local mymodule = require("mymodule")

print("Hello from use_mymodule.lua")
mymodule.example_func()

Files can also be placed in subdirectories and loaded by specifying the path to the file in the
require function. The path is specified as the directory name followed by a . and appending the
filename of the module without the .lua extension. The following example shows a module loc-
ated in a subdirectory called testdir being loaded using the require function.
-- File /testdir/mymodule.lua

-- This is an example of creating a module called mymodule2, which provides a
single function, mymodule.example_func()
-- which can be used by other scripts that import this module.

local mymodule2 = {}

function mymodule2.example_func()
 print("Hello from mymodule2.example_func()")
end

return mymodule2
-- File use_mymodule2.lua
-- Import the functionality from the file mymodule2.lua. Note that the require
function
-- needs the testdir path to import the file correctly.

local mymodule2 = require("testdir.mymodule2")

print("Hello from use_mymodule2.lua")
mymodule2.example_func()

Additional information on Lua modules can be found here: lua-users.org/wiki/ModulesTutorial.

http://lua-users.org/wiki/ModulesTutorial

OEM7 NovAtel API User Manual v5 18

Chapter 4 Loading and Running the Application
Lua scripts can be deployed onto a NovAtel receiver and run using the LUA command (see page
32). The scripts are assembled into an ISO image, which is then written to a Data Block of the
non-volatile storage within the receiver.

4.1 Packaging the Application
In order to load Lua scripts onto a NovAtel receiver, the scripts must first be packaged up into a
.hex file. Follow the steps below to create this package:

1. Place all the scripts to be loaded into a folder on a PC. This example will use
C:\MYLUAPROJECT.

2. Download the NovAtel API.

3. Open a command prompt within the utilities directory of the Lua Dev Kit and use the
make_iso_hex.bat batch file to create the .hex image. Usage for the script can be found by
calling it with no arguments as shown below:

C:\luadevkit\utilities>make_iso_hex.bat
There are less than 4 arguments.
Usage: make_iso_hex.bat <source directory> <destination file> <version> <data
block> [platforms]
where:
 <source directory> - directory to be made into ISO file
 <destination file> - output path and filename
 <version> - version string for the output file, up to 15 characters
 <data block> - Flash DataBlock number, 0-7

[platforms] - Optional list of supported platforms, separated by spaces.
 Eg, OEM729 OEM7700 OEM7600

Here are some more details on the arguments:

Argument Notes

<source
directory> This is the directory containing the Lua scripts

<destination
file> Full path name for the output file

<version> User-determined version string to use for the .hex file. This string will be reported
within the VERSION log the receiver

<data
block> Set this to 1

[platforms] This is optional and can typically be left blank

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v5 19

Example:
C:\luadevkit\utilities>make_iso_hex.bat c:\myluaproject ..\debuglooplua.hex
1.00 1
Create ISO file...
Warning: creating filesystem that does not conform to ISO-9660.
Total translation table size: 0
Total rockridge attributes bytes: 0
Total directory bytes: 114
Path table size(bytes): 10
25 extents written (0 MB)

Create HEX file...

Set DataBlk...
*
* datablk - NovAtel Inc. data block utility n
* Executable Version: 2.28
* Header Version: 2
*
Processing \luadevkit\debuglooplua.iso.nodb.hex to \luadevkit\debuglooplua.hex
Success \luadevkit\debuglooplua.hex is ready to be programmed into flash.

ISO Image Limitations

There are a few limitations with the ISO image format used to package up the Lua
scripts.

l There is a maximum directory depth of 8, including the root

l The maximum file name length is 27 characters plus a 4 character extension
for a total of 31 characters

l The maximum directory name is 31 characters

4.2 Loading the Application
Once the Lua scripts have been packaged up into a .hex file, they can be loaded onto the
receiver. Use WinLoad or SoftLoad commands to load the .hex file. Refer to Updating or Upgrad-
ing Using the WinLoad Utility or Updating Using SoftLoad Commands in the OEM7 Installation
and Operation User Manual.

The presence of the Lua scripts can be verified as follows:

1. Check the VERSION log:
log version

<OK
[COM1]<VERSION COM1 0 90.5 UNKNOWN 0 138.554 02444020 3681 14581
< 3
< GPSCARD "DDNRNNCBNA" "BMHR16370009M" "OEM7700-1.00"
"OM7MR0400AN0001" "OM7BR0000RB0000" "2018/Jan/09" "07:58:45"
< OEM7FPGA "" "" "" "OMV070001RN0000" "" "" ""
< DB_LUA_SCRIPTS "SCRIPTS" "Block1" "" "1.00" "" "2018/Jan/10"
"10:53:48"
[COM1]

https://docs.novatel.com/oem7/Content/PDFs/OEM7_Installation_Operation_Manual.pdf
https://docs.novatel.com/oem7/Content/PDFs/OEM7_Installation_Operation_Manual.pdf

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v5 20

If a Lua Scripts package has been loaded on to the receiver, it will be reported with a Com-
ponent Type of DB_LUA_SCRIPTS. The "sw version" field reports the version string that was
passed in to make_iso_hex.bat.

2. Check the LUAFILESYSTEMSTATUS log (see page 37).
log LUAFILESYSTEMSTATUS

<OK
[COM1]<LUAFILESYSTEMSTATUS COM1 0 89.5 UNKNOWN 0 0.194 02444020 b8f8
14581
< MOUNTED ""
[COM1]

If the LUAFILESYSTEMSTATUS log reports that the file system is mounted, the ISO
image within the package was successfully mounted. This happens automatically at sys-
tem startup; there are no commands required to mount this file system.

3. Check the LUAFILELIST log (see page 35).
log LUAFILELIST

<OK
[COM1]<LUAFILELIST COM1 0 89.5 UNKNOWN 0 992.000 02444020 b447 14581
< 155 20180110 92730 "/lua/debugloop.lua"
[COM1]

If the LUAFILELIST log shows a file, it is available to the Lua interpreter.

4.3 Running the Application
The LUA command (see page 32) is used to start the Lua interpreter.

To run a Lua script in the background, with no access to stdin, stdout and stderr, use LUA
START.

To run the Lua interpreter in interactive mode with stdin, stdout and stderr connected to a
receiver port, use LUA PROMPT.

The interpreter is started within the /lua working directory so scripts within that directory can be
referenced directly, without a path.

4.3.1 Lua Start
To execute a Lua script in the background use the LUA START option.
lua start helloworld.lua

<OK
[COM1]

log luastatus

<OK
[COM1]<LUASTATUS COM1 0 88.0 UNKNOWN 0 52.479 02444020 afcc 32768
< 0 "helloworld.lua" COMPLETED
[COM1]

log luaoutput

<OK
[COM1]<LUAOUTPUT 0 47.462
< 1 0 STDOUT "Hello World!"
<LUAOUTPUT 0 48.464

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v5 21

< 2 0 STDOUT "Hello again 1"
<LUAOUTPUT 0 49.465
< 3 0 STDOUT "Hello again 2"
<LUAOUTPUT 0 50.467
< 4 0 STDOUT "Hello again 3"
<LUAOUTPUT 0 51.468
< 5 0 STDOUT "Hello again 4"
<LUAOUTPUT 0 52.469
< 6 0 STDOUT "Hello again 5"
<LUAOUTPUT 0 52.470
< 7 0 STDOUT "Good Bye"
[COM1]

Note that the print statements within the script are output in the LUAOUTPUT log (see page
38). Also, note that the LUASTATUS log (see page 39) shows that the script has completed.

4.3.2 Lua Prompt
To execute a Lua script with stdin, stdout and stderr connected to a receiver port, use the LUA
PROMPT option. The print strings are output on the port where the LUA command (see page 32)
was entered.

Example:
lua prompt helloworld.lua
Lua 5.3.4 Copyright (C) 1994-2017 Lua.org, PUC-Rio
Hello World!
Hello again 1
Hello again 2
Hello again 3
Hello again 4
Hello again 5
Good Bye
>
<OK
[COM1]

log luastatus

<OK
[COM1]<LUASTATUS COM1 0 88.0 UNKNOWN 0 52.479 02444020 afcc 32768
< 0 "helloworld.lua" COMPLETED
[COM1]

log luaoutput

<OK
[COM1]<LUAOUTPUT 0 47.462
< 1 0 STDOUT "Hello World!"
<LUAOUTPUT 0 48.464
< 2 0 STDOUT "Hello again 1"
<LUAOUTPUT 0 49.465
< 3 0 STDOUT "Hello again 2"
<LUAOUTPUT 0 50.467
< 4 0 STDOUT "Hello again 3"
<LUAOUTPUT 0 51.468
< 5 0 STDOUT "Hello again 4"
<LUAOUTPUT 0 52.469
< 6 0 STDOUT "Hello again 5"

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v5 22

<LUAOUTPUT 0 52.470
< 7 0 STDOUT "Good Bye"
[COM1]

On a different port (e.g. COM2) it can be seen that the INTERFACEMODE of COM1 has been
changed to LUA.
log interfacemode

<OK
[COM2]<INTERFACEMODE COM2 29 97.0 UNKNOWN 0 25.700 0244c009 7a68 14581
< COM1 LUA LUA OFF
...

The LUASTATUS log (see page 39) also shows that the script is executing.
log luastatus

<OK
[COM2]<LUASTATUS COM2 0 96.5 UNKNOWN 0 25.705 0244c009 afcc 14581
< 0 "-i helloworld.lua" EXECUTING
[COM2]

4.3.3 Single Line Lua Program
The "-e" option can be used to run a single line Lua program. Here is an example using a simple
print call.
[COM1]lua prompt "-e print('Hello World')"

<OK
[COM1]Lua 5.3.4 Copyright (C) 1994-2017 Lua.org, PUC-Rio
Hello World
>

4.3.4 Passing Arguments into Lua
To pass arguments into Lua, the script name and arguments must be enclosed within double
quotes. The arguments are stored within the arg variable in Lua, which is a table of strings.

The example below shows how to iterate through the arguments and demonstrates some of the
implications of the fact that the arguments are strings.
-- Print the script name
print(string.format('Script Name: "%s"',arg[0]))

FormatString = '%-10s%-10s%-15s%-15s'
print(string.format(FormatString,'Arg#','Type','String','Number'))

-- Iterate through the arguments
Sum = 0
NumberOfTwenties = 0
for i = 1,4 do
 -- Print some information about the argument
 -- NOTE: The type of these arguments is always "string"
 print(string.format(FormatString,i,type(arg[i]),arg[i],tonumber(arg[i])))

 -- Check if the string represents a number
 if (tonumber(arg[i]) ~= nil) then
 -- If the string represents a number, Lua will automatically

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v5 23

 -- convert the string to a number for arithmetic
 Sum = Sum + arg[i]
 end

 -- Since the arg values are always of type "string"
 -- a direct comparison with a number will always fail
 if (arg[i] == 20) then
 NumberOfTwenties = NumberOfTwenties + 1
 end
end
print('')
print(string.format("Sum of Number Arguments: %d",Sum))
print(string.format("Number of 20s found: %d",NumberOfTwenties))

Here is how to call this script using the LUA command (see page 32). Note how the string "20" is
not considered equal to the number 20.
lua prompt "scriptargs.lua 1 20 Hello 300"

<OK
[COM1]Lua 5.3.4 Copyright (C) 1994-2017 Lua.org, PUC-Rio
Script Name: "scriptargs.lua"
Arg# Type String Number
1 string 1 1
2 string 20 20
3 string Hello nil
4 string 300 300
Sum of Number Arguments: 321
Number of 20s found: 0
>

4.3.5 Starting a Script Automatically
To start Lua automatically when the receiver boots, add a file named "autoexec.lua" to the root
directory of the lua script package. This script will be executed when the receiver starts up. To
run other scripts from the autoexec.lua script, use the dofile Lua command as shown in the
example below.

Here is the content of an example hello.lua script:
Person1 = arg[1]
Person2 = arg[2]

print(string.format("%s says hello to %s",Person1,Person2))

Here is the content of an example autoexec.lua script:
arg[1] = "Alice"
arg[2] = "Bob"

dofile("hello.lua")

The autoexec.lua script sets up the command line arguments for the hello.lua script and then
runs the script.

Here is the example in action:

Chapter 4 Loading and Running the Application

OEM7 NovAtel API User Manual v5 24

log luastatus onchanged

<OK
[COM1]<LUASTATUS COM1 0 87.5 UNKNOWN 0 0.614 02444020 afcc 32768
< 0 "autoexec.lua" COMPLETED
[COM1]

log luaoutput onchanged

<OK
[COM1]<LUAOUTPUT 0 0.593
< 1 0 STDOUT "Alice says hello to Bob"
[COM1]saveconfig

<OK
[COM1]

reset

<OK
[COM1]
[COM1]<LUASTATUS COM1 0 13.0 UNKNOWN 0 1.234 02440000 afcc 32768
< 0 "autoexec.lua" COMPLETED
[COM1]<LUAOUTPUT 0 1.151
< 1 0 STDOUT "Alice says hello to Bob"
[COM1]

log luafilelist

<OK
[COM1]<LUAFILELIST COM1 1 84.5 UNKNOWN 0 32.000 02444020 b447 32768
< 55 20180613 105553 "/lua/autoexec.lua"
<LUAFILELIST COM1 0 87.5 UNKNOWN 0 32.000 02444020 b447 32768
< 97 20180613 105502 "/lua/hello.lua"
[COM1]

OEM7 NovAtel API User Manual v5 25

Chapter 5 Debugging and Testing

5.1 ZeroBrane Studio
ZeroBrane Studio is a lightweight Integrated Development Environment (IDE) for Lua. A version
of ZeroBrane is included in the NovAtel API that contains additions to make creating and debug-
ging Lua scripts on NovAtel receivers easier.

The ZeroBrane Studio project website is studio.zerobrane.com/.

The ZeroBrane documentation on debugging can be found at: studio.zerobrane.com/doc-
remote-debugging.

5.2 On Target vs. Off Target Debugging
There are two main ways to debug Lua scripts for use on the OEM7 receiver:

l On Target:
The Lua interpreter on NovAtel receivers can be debugged using the ZeroBrane IDE via an
Ethernet connection to the receiver. In this method, the Lua interpreter on the target (i.e.
the receiver) is executing the script and the Lua interpreter on the host PC is just providing a
debug server.

l Off Target:
The Lua interpreter within ZeroBrane Studio can execute a script and interact with the
receiver via the SCOM ports over an Ethernet connection.

The diagram below describes how the various pieces interact in both methods and the table that
follows contains more notes on the differences:

Debugging
Type

Lua
Interpreter

IP Address to
Use for
SCOM

Notes

On Target On OEM7
Receiver 127.0.0.1 This environment more closely resembles how the

Lua scripts will be deployed in an end user use case.

https://studio.zerobrane.com/
https://studio.zerobrane.com/doc-remote-debugging
https://studio.zerobrane.com/doc-remote-debugging

Chapter 5 Debugging and Testing

OEM7 NovAtel API User Manual v5 26

Debugging
Type

Lua
Interpreter

IP Address to
Use for
SCOM

Notes

Off Target On PC

IP Address of
OEM Receiver

See the
IPSTATUS log

Useful for quickly developing Lua scripts and testing
non-real time aspects of the code.

SCOM Port Numbers

The NovAtel provided scom module can be used to programatically determine
socket port numbers for the SCOM port. For more information, see Additions and
Limitations on page 30.

See the table below for the port numbers:

SCOM Port Port Number

SCOM1 49154

SCOM2 49155

SCOM3 49156

SCOM4 49157

5.3 On Target Debugging
Version 1.70 of the ZeroBrane IDE is included within the NovAtel API under the zerobrane folder.
This version has been customized for use with NovAtel receivers. However, the stock version
can be downloaded here: studio.zerobrane.com/support.

5.3.1 Prerequisites
Here are the prerequisites to enable NovAtel receiver on-target Lua debugging:

l An OEM7 receiver running firmware 7.05.00 or later.

l A firmware model supporting the user application.

l An Ethernet connection from a host PC to the receiver.

l The script to debug must be available on both the PC and the OEM7 receiver.

Note that the mobdebug.lua script, which is used by ZeroBrane for remote debugging, is pre-
loaded into the Lua interpreter and does not need to be added to the Lua script package that is
loaded onto the receiver.

5.3.2 PC and Receiver Setup
1. Download and install the ZeroBrane IDE to a PC.

2. Run ZeroBrane IDE (zbstudio.exe). The IDE will open up to a default Project containing some
examples.

https://studio.zerobrane.com/support

Chapter 5 Debugging and Testing

OEM7 NovAtel API User Manual v5 27

3. Switch to the Lua 5.3 - NovAtel interpreter, which is the version running on the OEM7. To do
this, select Project | Lua Interpreter | Lua 5.3 - NovAtel.

4. The Local console tab at the bottom can be used to experiment with the Lua syntax.

Example:
Welcome to the interactive Lua interpreter. Enter Lua code and press
Enter to run it. Use Shift-Enter for multiline code.
Use 'clear' to clear the shell output and the history. Use 'reset' to
clear the environment.
Prepend '=' to show complex values on multiple lines. Prepend '!' to
force local execution.
MyVar = 123
MyOtherVar = 456
print(MyVar+MyOtherVar)
579

5. On the OEM7 receiver, configure the network using the ETHCONFIG command and
IPCONFIG command, and verify that a connection is possible. For example, use a terminal
program to connect to an ICOM port and request a VERSION log. For details on how to set
this up see Ethernet Configuration in the OEM7 Installation and Operation User Manual.

6. On the PC where the ZeroBrane IDE is running, set the location where the scripts that were
loaded onto the receiver can be found. To do this select Project | Project Directory |
Choose and select the folder. The contents of the selected folder will be packaged and
loaded onto the receiver, later in step 9. This example uses the simple debugloop.lua script
shown here:\

DebugHostIP = arg[1]

https://docs.novatel.com/oem7/Content/PDFs/OEM7_Installation_Operation_Manual.pdf

Chapter 5 Debugging and Testing

OEM7 NovAtel API User Manual v5 28

LoopCount = 0

require('mobdebug').start(DebugHostIP)

while 1 do
 print(LoopCount)
 socket.sleep(1)
 LoopCount = LoopCount + 1
 end

7. Place a break-point in the script by clicking to the left of the code line as shown below:

8. Turn on the ZeroBrane debug server. To do this ensure that Project | Start Debug Server
is checked.

9. Create a Lua script package from the project directory and load it onto the receiver using the
steps described in Loading and Running the Application on page 18.

10. The OEM7 receiver should now have the same Lua script available to it as the ZeroBrane IDE
does. Verify this using the LUAFILESYSTEMSTATUS log (see page 37) and LUAFILELIST
log (see page 35).

log luafilesystemstatus onchanged

<OK
[COM1]<LUAFILESYSTEMSTATUS COM1 0 91.0 UNKNOWN 0 0.343 02444020 b8f8
14581
< MOUNTED ""

log luafilelist

Chapter 5 Debugging and Testing

OEM7 NovAtel API User Manual v5 29

<OK
[COM1]<LUAFILELIST COM1 0 89.0 UNKNOWN 0 54.000 02444020 b447 14581
< 176 20180122 141649 "/lua/debugloop.lua"
[COM1]

11. Start the Lua script, passing the IP address of the PC running ZeroBrane, as the argument.
The Lua interpreter will reach out to the debugger running on the host PC to establish the
debugging connection.

lua prompt "debugloop.lua 198.161.68.53"
<OK
[COM1]Lua 5.3.4 Copyright (C) 1994-2017Lua.org, PUC-Rio
0
1
2
3
4
5

The ZeroBrane IDE will then be able to control the Lua interpreter on the receiver:

12. Use the debugging controls within the IDE to step through the code and set break points.

OEM7 NovAtel API User Manual v5 30

Chapter 6 Additions and Limitations
This chapter describes some of the ways that the Lua interpreter running on the OEM7 receiver
is different than a standard Lua interpreter.

6.1 Additions
l The mobdebug module is preloaded to facilitate debugging.

l Help messages are available for some functions. Use the H() function within the receiver
Lua prompt to view help.

l The crc32 module was created by NovAtel to generate CRCs for NovAtel messages. Use H
(crc32) on the receiver Lua prompt for more details.

l The scom module was created by NovAtel as convenience functions to access the SCOM
ports. Use H(scom) on the receiver Lua prompt for more details.

l If a Lua script has been started with the LUA PROMPT command, it can be stopped using
the os.exit() Lua command.

l A 64 kB RAM disk has been provided to the Lua interpreter at the location /tmp.

l The os.tmpname() function will return a unique file name within /tmp.

l Some environment variables have been added to the Lua interpreter running on the OEM7
receiver. They can be accessed using the os.getenv() function and are defined as follows:

l "ONTARGET" is set to "true".

l "GPSCARD_PSN" is set to the receiver PSN.

l "ENCLOSURE_PSN" is set to the receiver's enclosure PSN, if one is set.

6.2 Limitations
l The C User Application is not available to customers. That is, customers cannot write C code
or take external, compiled libraries and link them to the Lua interpreter running on the OEM7
receiver.

l The Operating System Library is not fully-functioning.

l os.time() and os.date() report in Greenwich Mean Time (GMT)

l os.date() will report time starting from Jan 1 1970, until GPS coarse time is set, at
which point it will report the current time.

l There is no way to stop a Lua script that was started with LUA START, unless the script itself
completes.

OEM7 NovAtel API User Manual v5 31

Chapter 7 Lua Commands
The following commands are used with Lua.

l LUA command on the next page

Chapter 7 Lua Commands

OEM7 NovAtel API User Manual v5 32

7.1 LUA
Configure Lua Interpreter

Platform: OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, PwrPak7,
SPAN CPT7, SMART7

Use this command to configure the execution of the Lua interpreter on the receiver. Scripts that
appear within the LUAFILELIST log (see page 35) can be executed by the Lua interpreter.

Message ID: 2049

Abbreviated ASCII Syntax:
LUA option [LuaInterpreterArguments]

Abbreviated ASCII Example:
lua start "printarguments.lua 1 2 3 4 5"

Field Field Type ASCII
Value

Binary
Value Description Format Binary

Bytes
Binary
Offset

1 Lua header - - Command header. - H 0

2 option

START 1

Start the Lua
interpreter in the
background. The file
descriptors stdout,
stdin and stderr will not
be accessible outside
the receiver.

Enum 4 H

PROMPT 2

Start the Lua
interpreter in
interactive mode and
connect stdout, stdio
and stderr to the port
on which the command
was entered. The
INTERFACEMODE of
that port will be
changed to LUA for
both RX and TX.

Chapter 7 Lua Commands

OEM7 NovAtel API User Manual v5 33

Field Field Type ASCII
Value

Binary
Value Description Format Binary

Bytes
Binary
Offset

3 LuaInterpreter
Arguments STRING

String containing Lua
interpreter options
including the name of
the script file to run
and arguments to pass
to the script.

This string must be
enclosed in quotes if it
contains any spaces.

String arguments
within the fieldmust
be enclosed by single
quotes.

String
[400] Variable H+4

The format of the Lua Interpreter Arguments is as follows as adapted from the standard Lua 5.3
interpreter:
[options] [script [args]]
Available options are:
 -e stat execute string 'stat'
 -i enter interactive mode after executing 'script'.

(This is added to the arguments when using the PROMPT option of the
 LUA command)
 -l name require library 'name'

OEM7 NovAtel API User Manual v5 34

Chapter 8 Lua Logs
The following logs are used with Lua.

l LUAFILELIST log on the next page

l LUAFILESYSTEMSTATUS log on page 37

l LUAOUTPUT log on page 38

l LUASTATUS log on page 39

Chapter 8 Lua Logs

OEM7 NovAtel API User Manual v5 35

8.1 LUAFILELIST
List available Lua scripts

Platform: OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, PwrPak7,
SPAN CPT7, SMART7

This sequenced log informs the user of the available scripts, obtained from the ISO loaded onto
the receiver. The size of the file, last change date in yyyymmdd format, last change time in
hhmmss format, and path to the files are printed as well.

Message ID: 2151

Log Type: Polled

Recommended Input:
LOG LUAFILELIST

Abbreviated ASCII Example:
[COM1]<LUAFILELIST COM1 6 89.5 UNKNOWN 0 4.000 02444020 b447 14635
< 0 20180202 151403 "/lua/uppercase.lua"
<LUAFILELIST COM1 5 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 2706 20180129 152042 "/lua/debugloop.lua"
<LUAFILELIST COM1 4 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 4692 20180202 110107 "/lua/parsetime.lua"
<LUAFILELIST COM1 3 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 4764 20180205 105415 "/lua/scom_rx.lua"
<LUAFILELIST COM1 2 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 3728 20180202 104830 "/lua/scomtunnel.lua"
<LUAFILELIST COM1 1 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 3044 20180201 144849 "/lua/scriptargs.lua"
<LUAFILELIST COM1 0 90.5 UNKNOWN 0 4.000 02444020 b447 14635
< 2337 20180129 155140 "/lua/sendtocom2.lua"

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 LUAFILELIST
header Log header. - H 0

2 Size File size (in Bytes) Ulong 4 H

3 Date

Last change date

When viewed as a string, the date is of the
form YYYYMMDD. So, numerically, the date is
(Year * 10000) + (Month * 100) + (Day).

Ulong 4 H+4

4 Time

Last change time

When viewed as a string, the time is
HHMMSS. So, numerically, the time is (Hour
* 10000) + (Minute * 100) + (Second).

Ulong 4 H+8

Chapter 8 Lua Logs

OEM7 NovAtel API User Manual v5 36

Field Field Type Description Format Binary
Bytes

Binary
Offset

5 Path
The path to the Lua script

The maximum length of this string is 256
bytes.

String Variable H+12

Chapter 8 Lua Logs

OEM7 NovAtel API User Manual v5 37

8.2 LUAFILESYSTEMSTATUS
Query mount status of Lua scripts

Platform: OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, PwrPak7,
SPAN CPT7, SMART7

Use this log to query the mount status of the ISO image that contains the Lua scripts loaded on
to the receiver.

Message ID: 2150

Log Type: Asynch

Recommended Input:
LOG LUAFILESYSTEMSTATUS

Abbreviated ASCII Example:
<LUAFILESYSTEMSTATUS COM1 0 90.0 UNKNOWN 0 0.204 02444020 b8f8 14635
< MOUNTED ""

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 LUAFILESYSTEMSTATUS
header Log header. H 0

2 Status
The status of the file system. See
Table 1: File System Status
below.

Enum 4 H

3 Error

String that indicates the error
message if mounting fails

The maximum length of this
string is 52 bytes.

String Variable H+4

Value Description

1 UNMOUNTED

2 MOUNTED

3 BUSY

4 ERROR

5 UNMOUNTING

6 MOUNTING

Table 1: File System
Status

Chapter 8 Lua Logs

OEM7 NovAtel API User Manual v5 38

8.3 LUAOUTPUT
Output stderr and stdout from the Lua interpreter

Platform: OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, PwrPak7,
SPAN CPT7, SMART7

Use this log to output stderr and stdout messages from the Lua interpreter.

Message ID: 2240

Log Type: Asynch

Recommended Input:
LOG LUAOUTPUT ONNEW

Abbreviated ASCII Example:
<LUAOUTPUT 0 346044.929
< 1 0 STDOUT "Lua 5.3.4 Copyright (C) 1994-2017 Lua.org, PUC-Rio"
<LUAOUTPUT 0 346044.987
< 2 0 STDOUT "> "

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 LUAOUTPUT
header Log header. - H 0

2 Sequence
Number

Running number of each LUAOUTPUT log
produced by the system Ulong 4 H

3 Executor
Number Lua Executor Number that produced the data Ulong 4 H+4

4 Data
Source See Table 2: Lua Data Source below Enum 4 H+8

5 Data

NULL-terminated string containing a single
line of data from stderr or stdout. This string
is not terminated with a carriage return or
line feed.

This string contains only printable characters.

The maximum length of this string is 128
bytes.

String Variable H+12

Binary ASCII Description

0 STDOUT Data is from stdout

1 STDERR Data is from stderr

Table 2: Lua Data Source

Chapter 8 Lua Logs

OEM7 NovAtel API User Manual v5 39

8.4 LUASTATUS
Display status of Lua scripts

Platform: OEM719, OEM729, OEM7500, OEM7600, OEM7700, OEM7720, PwrPak7,
SPAN CPT7, SMART7

Use this log to determine which scripts are running on the receiver and whether the scripts have
exited or encountered errors.

Message ID: 2181

Log Type: Collection

Recommended Input:
LOG LUASTATUS

Abbreviated ASCII Example:
[COM1]<LUASTATUS COM1 1 84.5 FINESTEERING 1963 402110.866 02400000 2e18 32768
< 0 "icom_rx.lua 127.0.0.1 3001" EXECUTING
<LUASTATUS COM1 0 84.5 FINESTEERING 1963 402110.866 02400000 2e18 32768
< 1 "" NOT_STARTED

The example above is for the projected log output for two executors.

Field Field Type Description Format Binary
Bytes

Binary
Format

1 LUASTATUS
header Log header. H 0

2 Number Executor number Ulong 4 H

3 Script Script and arguments String
[256] Variable H+4

4 Status Script status. See Table 3: Script
Status below. Enum 4 Variable

Binary ASCII Description

0 NOT_STARTED There is no script running on the executor

1 EXECUTING The script is running

2 COMPLETED The script completed successfully

3 SCRIPT_ERROR The script exited with an error

4 EXECUTOR_
ERROR

The script executor encountered an error while attempting to run the
script

Table 3: Script Status

OEM7 NovAtel API User Manual v5 40

Chapter 9 Using Lua to Access I/O Devices Connected
to the Receiver

A common request from users of OEM7 receivers is have the receiver interact with other equip-
ment in the embedded system. For example, manipulating GPIOs to control external devices or
monitor other sensors. To meet this need, certain OEM7 receivers have I2C bus signals available
which allows connections to a variety of devices.

“The I2C bus was designed by Philips in the early ’80s to allow easy communication between
components which reside on the same circuit board. Philips Semiconductors migrated to NXP in
2006”. (i2c-bus.org)

Starting with the 7.05.00 release, all OEM7 receivers that provide access to the I2C signals sup-
port two commands and one log to interact with I2C devices connected to the receiver:

l USERI2CREAD command (see page 41)

l USERI2CWRITE command (see page 43)

l USERI2CRESPONSE command (see page 46)

In the SampleScripts folder of the NovAtel API you will find two examples of I2C “drivers” for
GPIO expanders. One example is for the MCP23008 8 I/O port expander (mcp23008ioe.lua) and
the other example is for the PCA9554 8-bit I/O expander (PCA9554ioe.lua). These examples can
be used as the basis for creating drivers to interact with other I2C devices.

https://www.i2c-bus.org/

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v5 41

9.1 USERI2CREAD
Read data from devices on the I2C bus

Platform: OEM7600, OEM7700, OEM7720

Use this command to read data from devices on the I2C bus.

This command only applies to OEM7 receivers that have I2C signals available on the
interface connector. The compatible receivers are listed in the Platform section above.

The USERI2CRESPONSE log (see page 46) can be used to check the completion or status of the
read operation. An optional user defined Transaction ID can be provided to help synchronize
requests with responses in the USERI2CRESPONSE log (see page 46). This command is primar-
ily intended to be used by Lua applications that need to interact with external devices.

Reading from an I2C device requires a device address, to distinguish which physical device is to
be accessed, a register within the device, and the expected number of bytes to be read. Depend-
ing on the type of I2C device, register addresses can be 1 to 4 bytes in length, so the actual num-
ber of bytes for the register address must be specified.

For some I2C devices there are no registers within the device. In this case, the Register Address
Length is 0 and no bytes are supplied for the Register Address.

The USERI2CREAD command is flexible to handle all of these situations.

Message ID: 2232

Abbreviated ASCII Syntax:
USERI2CREAD DeviceAddress RegisterAddressLen RegisterAddress RequestReadLen
[TransactionID]

Examples:
USERI2CREAD 70 1 AB 12 1234

USERI2CREAD 74 3 ABCDEF 234 5678

USERI2CREAD 74 0 234 5678

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 USERI2CREAD
header

Command header. See Messages for
more information. - H 0

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v5 42

Field Field Type Description Format Binary
Bytes

Binary
Offset

2 DeviceAddress

The 7 bit address of the I2C device.
Valid values are 0 through 127.

For ASCII and Abbreviated commands,
this field is a hexadecimal string of two
digits. There is no 0x prefix and spaces
are not allowed in the string.

Uchar 11 H

3 RegisterAddressLen The length of the register address that
follows. Valid values are 0 through 4. Ulong 4 H+4

4 RegisterAddress

The actual address of the register to be
read. The number of bytes here must
match the RegisterAddressLen. In
particular, when RegisterAddressLen is
0, this field is empty (even for a binary
command)

For ASCII and Abbreviated commands,
this field is a hexadecimal string of two
digits for each byte in the register
address. There is no 0x prefix and
spaces are not allowed in the string.

Uchar
Array

X1 H+8

5 RequestReadLen
The length of data expected to be
retrieved from the device. Valid values
are 1 through 256.

Ulong 4 H+122

6 TransactionID

An optional user provided ID for this
transaction. Default = 0.

This transaction ID will be copied to the
USERI2CRESPONSE log (see page
46) created for this read operation.

Ulong 4 H+163

1In the binary case, additional bytes of padding are added after this field to maintain 4-byte alignment for the fields
that follow.
2H+8 if X=0
3H+12 if X=0

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v5 43

9.2 USERI2CWRITE
Write data to device on I2C bus

Platform: OEM7600, OEM7700, OEM7720

Use this command to write data to devices on the I2C bus.

This command only applies to OEM7 receivers that have I2C signals available on the
interface connector. The compatible receivers are listed in the Platform section above.

The USERI2CRESPONSE log (see page 46) can be used to check the completion or status of the
write operation. An optional user defined Transaction ID can be provided to help synchronize
requests with responses in the USERI2CRESPONSE log (see page 46). This command is primar-
ily intended to be used by Lua applications that need to interact with external devices.

Writing to an I2C device requires a device address, to distinguish which physical device is to be
accessed, a register within the device and the data. Depending on the type of I2C device,
register addresses can be 1 to 4 bytes in length, and so the actual number of bytes for the
register address must be specified.

For some I2C devices there are no registers within the device. In this case, the Register Address
Length is 0, and no bytes are supplied for the Register Address.

For some other I2C devices, write operations are done in two stages:

1. The first stage sends a write command with a register address, but no data. This is a dummy
write to set the register within the device for write operations that follow.

2. The second stage sends a write command with no register address, but does send a stream
of data.

The USERI2CWRITE command is flexible to handle all of these situations.

Message ID: 2233

Abbreviated ASCII Syntax:
USERI2CWRITE DeviceAddress RegisterAddressLen RegisterAddress
WriteDataLength WriteData [TransactionID]

Examples:
USERI2CWRITE 70 1 AB 12 3132333435363738393A3B3C 1234

USERI2CWRITE 74 3 ABCDED 5 1234567890 1234

USERI2CWRITE 40 0 5 1234567890 1234

USERI2CWRITE 40 2 AABB 0 1234 (a dummy write)

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 USERI2CWRITE
header

Command header. See Messages
for more information. - H 0

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v5 44

Field Field Type Description Format Binary
Bytes

Binary
Offset

2 DeviceAddress

The 7 bit address of the I2C
device. Valid values 0 through
127.

For ASCII and Abbreviated
commands, this field is a
hexadecimal string of two digits.
There is no 0x prefix and spaces
are not allowed in the string.

Uchar 11 H

3 RegisterAddressLen
The length of the register
address that follows. Valid values
are 0 through 4.

Ulong 4 H+4

4 RegisterAddress

The actual address of the register
to be written. The number of
bytes here must match the
RegisterAddressLen. In
particular, when
RegisterAddressLen is 0, this
field is empty (even for a binary
command)

For ASCII and Abbreviated
commands, this field is a
hexadecimal string of two digits
for each byte in the register
address. There is no 0x prefix
and spaces are not allowed in the
string.

Uchar
Array

X1 H+8

5 WriteDataLength
The length of data to be written
in bytes. Valid values are 0
through 256.

Ulong 4 H+122

1In the binary case, additional bytes of padding are added after this field to maintain 4-byte alignment for the fields
that follow.
2H+8 if X=0

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v5 45

Field Field Type Description Format Binary
Bytes

Binary
Offset

6 WriteData

The data to be written. The
number of bytes in this data
block must match the
WriteDataLength. In particular,
when WriteDataLength is 0, this
field is empty.

For ASCII and Abbreviated
commands, this field is a
hexadecimal string of two digits
for each byte in the data block.
There is no 0x prefix and spaces
are not allowed in the string.

Data is streamed to the device as
a series of bytes in the order
provided.

Uchar
Array Y1 H+162

7 TransactionID

An optional user provided ID for
this transaction. Default = 0.

This transaction ID will be copied
to the USERI2CRESPONSE log
(see page 46) created for this
write operation.

Ulong 4 H+16+4*INT
((Y+3)/4)3

1In the binary case, additional bytes of padding are added after this field to maintain 4-byte alignment for the fields
that follow.
2H+12 if X=0
3H+12+4*INT((Y+3)/4) if X=0

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v5 46

9.3 USERI2CRESPONSE
Status of USERI2CREAD or USERI2CWRITE Command

Platform: OEM7600, OEM7700, OEM7720

This log reports the status of a previously executed USERI2CREAD or USERI2CWRITE com-
mand. There is one log emitted for each command that is executed.

For the USERI2CREAD command (see page 41), this log outputs the data read from the device
on the I2C bus and the status of the read operation.

For the USERI2CWRITE command (see page 43), the status of the write operation is reported
and the data field will always be 0.

Message ID: 2234

Recommended Input:
log USERI2CRESPONSE onnew

Abbreviated ASCII Example 1:
USERI2CREAD 70 4 aabbccdd 12 6789

<USERI2CRESPONSE COM1 0 84.0 FINESTEERING 1994 257885.895 02000000 e3f6 32768
< 70 aabbccdd OK READ 6789 12 000102030405060708090a0b

Abbreviated ASCII Example 2:
USERI2CWRITE 70 3 aabbcc 8 0001020304050607 12345

<USERI2CRESPONSE COM1 0 84.0 FINESTEERING 1994 257885.895 02000000 e3f6 32768
< 70 aabbcc OK WRITE 12345 0

Field Field Type Description Format Binary
Bytes

Binary
Offset

1 USERI2CRESPONSE
header

Log header. See Messages for more
information. - H 0

2 DeviceAddress

The 7 bit address of the I2C device.
Valid values are 0 through 127.

For ASCII and Abbreviated
commands, this field is a hexadecimal
string of two digits. There is no 0x
prefix and spaces are not allowed in
the string.

Uchar 11 H

3 RegisterAddress

The actual register address used for
the operation. This is a ULONG value
in hexadecimal format (without 0x
prefix).

Ulong 4 H+4

1In the binary case, additional bytes of padding are added after this field to maintain 4-byte alignment for the fields
that follow.

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v5 47

Field Field Type Description Format Binary
Bytes

Binary
Offset

4 ErrorCode Error code for the operation. See
Table 4: Error Code below. Enum 4 H+8

5 OperationMode
Operation mode code. See Table 5:
Operation Mode Code on the next
page.

Enum 4 H+12

6 TransactionID This is the copy of Transaction ID
provided to the command. Ulong 4 H+16

7 ReadDataLength

For a Read operation, this is the actual
number of bytes read from the I2C
device.

For a Write operation, this value is
always zero.

Ulong 4 H+20

8 ReadData

For a Read operation, this is the data
read from the device. For ASCII logs
this field is displayed as a string of
hexadecimal digits, with two digits per
byte. The first byte retrieved from the
I2C device is the first byte displayed
and so on.

The maximum size of this field is 256
bytes.

When ReadDataLength is zero, this
field will be empty.

HEXBYTE
ARRAY Y H+24

Binary ASCII Description

0 OK I2C transaction is successful

1 IN_PROGRESS I2C transaction is currently in progress

2 DATA_TRUNCATION I2C transaction read data was truncated

3 BUS_BUSY I2C bus is busy

4 NO_DEVICE_REPLY No device replied to the I2C transaction request

5 BUS_ERROR I2C bus error or bus arbitration lost

6 TIMEOUT I2C transaction has timed out

7 UNKNOWN_FAILURE I2C transaction has an unexplained failure

Table 4: Error Code

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v5 48

Binary ASCII Description

0 NONE No Operation

1 READ Read Operation

2 WRITE Write Operation

3 SHUTDOWN Shut down Operation

Table 5: Operation Mode Code

Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver

OEM7 NovAtel API User Manual v5 49

	Customer Support
	Chapter 1 Overview
	1.1 Features
	1.2 Materials Provided – NovAtel API
	1.3 Requirements to Use NovAtel API
	1.4 Compatibility with Applications Built for OEM6 Receivers

	Chapter 2 Concepts
	2.1 Required Firmware Model
	2.2 Getting Started with Lua
	2.3 Using SCOM Ports
	2.4 Sending Data Out a Receiver Port Using SEND or SENDHEX
	2.5 Using a Tunnel to Take Over a Port

	Chapter 3 Learning Lua
	3.1 Online Documentation
	3.2 Creating A Custom NovAtel Style Log
	3.3 Modules

	Chapter 4 Loading and Running the Application
	4.1 Packaging the Application
	4.2 Loading the Application
	4.3 Running the Application
	4.3.1 Lua Start
	4.3.2 Lua Prompt
	4.3.3 Single Line Lua Program
	4.3.4 Passing Arguments into Lua
	4.3.5 Starting a Script Automatically

	Chapter 5 Debugging and Testing
	5.1 ZeroBrane Studio
	5.2 On Target vs. Off Target Debugging
	5.3 On Target Debugging
	5.3.1 Prerequisites
	5.3.2 PC and Receiver Setup

	Chapter 6 Additions and Limitations
	6.1 Additions
	6.2 Limitations

	Chapter 7 Lua Commands
	7.1 LUA

	Chapter 8 Lua Logs
	8.1 LUAFILELIST
	8.2 LUAFILESYSTEMSTATUS
	8.3 LUAOUTPUT
	8.4 LUASTATUS

	Chapter 9 Using Lua to Access I/O Devices Connected to the Receiver
	9.1 USERI2CREAD
	9.2 USERI2CWRITE
	9.3 USERI2CRESPONSE

